

26 February 2015 ASX: GRR

GRANGE RESOURCES LIMITED

Australia's most experienced magnetite producer

December 2014 Resource Reserve Statement Savage River Operations Tasmania

HIGHLIGHTS

- Mineral Resources and Ore Reserves have been estimated for Grange's Savage River magnetite deposits in Tasmania as at 31 December 2014.
- Mineral Resource increased to 390.1MT @ 47.7%DTR with updated estimation around Centre Pit.
- Ore Reserves at Savage River are 100.1MT @ 51.5%DTR and reflect mine production during the year.
- The attached updated Savage River Mineral Resource & Ore Reserve has been compiled in accordance with JORC 2012

Grange Resources Pty Ltd (ASX: GRR) ("Grange" or the "Company") advises that the Mineral Resource for the Savage River Ore Deposits has increased since the previous Mineral Resource estimate dated Dec 2013, as a result of a drilling program and re-interpretation of the Centre Pit Resource. Ore Reserves have been depleted for mine production during the last calendar year.

The resource consists of 390.1 million tonnes at 47.7% DTR (above a cut-off of 15% DTR) as detailed in table 1 and the reserve consists of 100.1 million tonnes at 51.5% DTR (above a cut-off of 15% DTR) as detailed in table 2.

	Measured Resources	Indicated Resources	Inferred Resources	TOTAL Resources
Tonnes (Mt)	76.1	157.4	156.6	390.1
DTR (%)	52.9	49.9	42.6	47.7
Fe (%)	68.1	68.0	68.6	68.2
Ni (%)	0.05	0.05	0.04	0.04
TiO ₂ (%)	0.65	0.69	0.64	0.66
MgO (%)	1.56	1.58	1.30	1.47
P (%)	0.009	0.009	0.008	0.009
V (%)	0.38	0.36	0.36	0.36
S (%)	0.11	0.10	0.09	0.10

Table 1 – Savage River Mineral Resource Estimate (Above a cut-off grade of 15% DTR)

NB - Elemental compositions were measured from Davis Tube Concentrate

- Stockpiles were included in this summary table and are itemised separately in tables of individual mining pits and aggregated stockpiles

Table 2 – Savage River Ore Reserve Estimate

(Above a cut-off grade of 15%DTR)

	Proved Reserves	Probable Reserves	TOTAL Reserves
Tonnes (Mt)	40.7	59.4	100.1
DTR (%)	51.5	51.6	51.5
Fe (%)	68.0	67.8	67.9
Ni (%)	0.04	0.04	0.04
TiO ₂ (%)	0.80	0.91	0.87
MgO (%)	1.58	1.69	1.64
P (%)	0.009	0.008	0.009
V (%)	0.38	0.37	0.37
S (%)	0.08	0.06	0.07

NB - Elemental compositions were measured from Davis Tube Concentrate

- Stockpiles were included in this summary table and are itemised separately in tables of individual mining pits and aggregated stockpiles

The Mineral Resource and Ore Reserve have been estimated by the Company's technical staff, and has been reported in accordance with the guidelines of the JORC Code (2012 edition).

INTRODUCTION

This document has been prepared to summarise the Mineral Resource and Ore Reserve of Grange Resources' magnetite deposits, located at Savage River and Long Plains in Tasmania.

This statement covers the material remaining at the end of December 2014 and contains summary details on the history of Savage River, the geology of the deposit and information involved in producing Mineral Resource and Ore Reserve estimates.

TENURE

Grange Resources operates under the conditions of Mining Lease 2M/2001 which consolidates and expands the previous lease 11M/97. This lease stands for 30 years from 2001, encompassing a total of 4,975 hectares.

The mining lease encompasses the Savage River Mine and concentrator, and the pelletising plant, wharf and shipping facilities located on the north west coast at Port Latta. The operation and facilities were previously held under Mining Lease 44M/66 when Pickands Mather & Co International (PMI) were the managers of the project until 1997.

Mining lease 14M/2007 was granted in May 2008 to extend the coverage of 2M/2001 for a total of 91 hectares. Another lease, 11M/2008 was granted in August 2009 to extend coverage by a further 108 hectares. This lease renewal is pending at time of writing and remains in good standing. The figure below shows the location of each lease.

EL30/2003 was granted in February 2010 and current tenure expires 18 June 2014 but is renewable. This lease covers the entire Long Plains deposit. The lease comprises 38 sq km

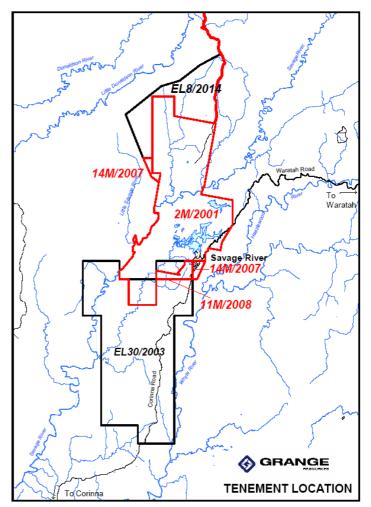


Figure 1 Tenements as at Dec 31, 2014

and adjoins 2M/2001 to the north. EL30/2003 covers all potential mining infrastructure sites

and haulage routes envisaged should the Long Plains magnetite deposits prove up to be economical and progress to mining.

Grange was granted an exploration lease application shown as EL8/2014 for an 11sq km lease north of 2M-2001 during 2014.

All leases previously held by Australian Bulk Minerals (ABM) were transferred to Grange Resources Tasmania following the merger in January, 2009.

LOCATION

The Savage River Mine and concentrator plant are located approximately 100km south west by sealed road from Burnie. The pelletising plant and dedicated port facilities at Port Latta are located 70 kilometres northwest by sealed road from Burnie (Figure 2).

Local topography surrounding the mine is rugged, with incised valleys and steep hills. The west flowing Savage River dissects the deposit. Regional vegetation includes undisturbed rain forest with the mine area comprising wet eucalypt, acacia and open heath land. Climate is wet temperate with an average annual rainfall of 1,950mm and mean monthly temperatures ranging from 3-19°C.

Figure 2 Savage River Project Location

PROJECT HISTORY

Ironstone outcrops around the Savage River were first discovered by State Government surveyor C.P. Sprent in early 1887 during one of his exploration journeys through western Tasmania. The deposits were first reported as a possible source of iron ore in 1919.

Systematic exploration techniques were employed by the Australian Bureau of Mineral Resources during 1956 that included ground and airborne magnetic surveys. The largest magnetic anomaly was detected at Savage River with two smaller anomalies being detected at Long Plains and Rocky River further to the south (Figure 3).

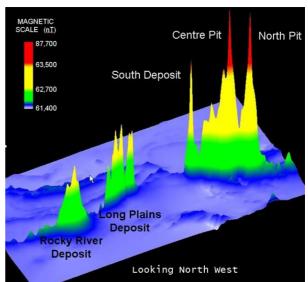
Diamond drilling commenced during the late 1950's and into the 1960's largely by Industrial and Mining Investigations Pty Ltd (IMI).

In 1965, Savage River Mines Ltd, a joint venture of Australian, Japanese and American interests was formed to develop the project. PMI (Pickands Mather International) developed an open cut mine, concentrator plant and township at Savage River to access the magnetite reserve. A pipeline from the concentrator plant to the pelletising plant and dedicated port facilities at Port Latta located on the northwest coast were also constructed.

Mining commenced in 1967 to supply a consortium of Japanese steel mills with 45 million tonnes of pelletised iron ore over a twenty-year period. Annual pellet production reached a maximum of 2.4 million tonnes per annum during the period.

The Savage River Project was operated for the full term of a thirty-year lease by PMI. In early 1997, PMI ceased mining activities at Savage River, transferring ownership of the Savage River Project to the Tasmanian Government on March 26 1997.

At the end of March 1997, ABM purchased the assets of the Savage River Project from the Tasmanian Government. Following this purchase, ABM continued mining the existing pits through a series of cut-back operations, mined the previously undeveloped South Deposit, and began exploration around the Long Plains area.


In January 2009 Grange Resources merged with ABM.

GEOLOGY

The Savage River magnetite deposit lies within and near the eastern margin of the Proterozoic Arthur Metamorphic Complex in north western Tasmania. This complex is exposed along a northeastsouthwest trending structural corridor, the Arthur Lineament, which separates Proterozoic sedimentary rocks to the northwest from a variety of Palaeozoic rocks to the southeast.

The magnetite deposits at Savage River represent the largest of a series of discontinuous lenses that extend in a narrow belt for some 25 kilometres south of the Savage River Township. The deposit is subdivided into sections on the basis of areas that have been mined. The areas are referred to as North Pit, South Lens, Centre Pit North, Centre Pit South, Centre Pit Southern Extension and South Deposit (Figure 5).

Figure 3 Savage River Regional Magnetics

Magnetite ore is almost entirely enclosed within a highly sheared and strike-faulted belt of mafic and ultramafic rocks specifically serpentinite and talc-carbonate schist. The magnetite ranges in thickness from 40 to 150 metres in width and is termed the Main Ore Zone (MOZ). Narrow (<20metre) lenses and layers also occur in the mafic sequence to the west. The mafic sequence comprises chlorite-calcite-albite schist and layered green amphibole-chlorite-albite schist.

A suite of late, strongly deformed metabasalt and metadolerite intrusive dykes occur either sub-parallel to or cut obliquely across the MOZ. Vein magnesite occurs adjacent to the MOZ with significant bodies developed in the east at South Lens and at the west in North Pit.

The magnetite ores comprise three volumetrically important groups: pyritic ores, serpentinitic ores and talc-carbonate ores. The ore may be massive, layered, or disseminated and range from being fine-grained to coarsely crystalline. Accessory mineral phases may include talc, tremolite, actinolite, chlorite, epidote, apatite and carbonate in varying amounts. The mineral assemblages preserved at Savage River imply middle to upper greenschist facies metamorphic conditions.

EXPLORATION, DRILLING, SAMPLING AND ANALYSIS

Exploration and resource definition over recent years at Savage River has involved dominantly reverse circulation (RC) and diamond drilling.

Exploration activity for 2014 has focussed on definition drilling around Centre Pit and environmental development work for Long Plains.

Core recoveries are generally high in the ore zones at Savage River (>90%) and there are no significant core recovery issues. Drill collars are surveyed using a combination of conventional surveying (total station) and/or high resolution RTK GPS.

All samples used in resource estimation are taken from diamond drill core of either HQ or NQ size or from reverse circulation drill holes employing a 140mm face sampling hammer. RC drilling has been used in recent years at Savage River to undertake infill drilling to improve confidence of domain boundaries and grade estimates.

Core was half core sampled as standard practice and rarely full core sampled to confirm historic drill intercepts or for metallurgical testing. Sampled length is generally between 0.75m to 2m within lithological units to preserve volume variance and to provide sample weights of 3kg. Reverse circulation drilling was used to give uniform 1m samples by cone or riffle splitter resulting in a 3kg sample. Field quality control procedures included insertion of prepared sample standards at a rate of 1:25 and limited field duplicate samples on the RC suite of samples.

Sample preparation techniques were industry standard for magnetite ores and used the subsampling protocol as recommended by the Savage River Laboratory. Sample preparation was conducted at an external NATA-accredited laboratory for both core and RC chips. The subsampling process for RC was identical to that of the core except for the coarse crush stage. For drill core, the core was first analysed for bulk density by immersion in water. All mineralised core samples have had a density determination completed. The half core samples were oven dried at 110 degrees for 12 hours, then coarse crushed to minus 2mm in a Boyd crusher then split to ~3kg, crushed again to 90% passing 1.7mm and split again with a 150g sub-sample taken for pulverising to 98% passing 75 microns.

A pulp sub-sample was collected and shipped for analysis at Savage River's mine lab by Davis Tube Recovery.

The primary assay technique is Davis Tube Recovery (DTR) on a 10g sample, followed by Ferrous Iron (Fe2+) via Satmagan and S, total Fe, TiO2, MgO, V, P, S and Ni via XRF on the Davis Tube Concentrate (DTC) via XRF. All techniques are considered total. DTR is the most appropriate assay technique for determination of magnetite recovery. All DTR samples were completed on the mine site using the Savage River DTR technique. This technique has been used for 40 years and supported by pit reconciliations.

All logging and assay data is stored in a database which was validated against original log sheets. The database includes holes drilled by Savage River Mines Limited, ABM and more recent holes drilled by Grange Resources.

GEOLOGICAL INTERPRETATION AND RESOURCE ESTIMATION

Geological controls and relationships were used to define estimation domains with mostly hard boundaries, based on sharp mineralisation contacts and grade boundaries. A nominal grade cut-off of 15%DTR is a natural grade boundary between magnetite lenses and disseminated wall-rocks. This cut-off was used to help define the mineralised envelope within which the higher grade sub domains were interpreted. 3D wireframes were used to code the drilling intersects and select samples within each domain.

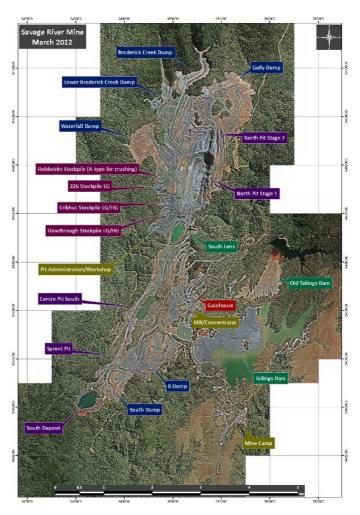
Oxidised material was not included in the resource estimation.

Sample data at Savage River were generally composited to 2 metre down hole length using a best fit-compositing method. Long Plains sample data were composited to 1 metre lengths owing to the thinner mineralised magnetite lenses at Long Plains. Residual samples (those composite intervals for which there was less than 75% of the composite length) were considered biased and hence were not included in the estimate.

Block models were prepared for each part of the deposit using Surpac Software. Block sizes at Savage River are generally 10mE by 10mN by 5mRL parent block size with sub-celling to 5mE by 5mN by 2.5mRL. Block sizes at Long Plains were assigned a 10mE by 25mN by 10mRL parent block size with sub-celling to 1.25mE by 6.25mN by 2.5mRL owing to the thinner mineralised magnetite lenses at Long Plains.

Models were estimated using Ordinary Kriging for the North Pit, South Deposit and Centre Pit Combined (comprising Centre Pit North and Centre Pit South resources) and for Long Plains. Inverse Distance Cubed weighting estimation techniques are employed for the Sprent pit resource. Geostatistical analysis, including variography studies to develop spatial estimation parameters were prepared for each of the major areas of mineralisation by Snowden Mining Industry Consultants or Optiro. These parameters were used to assist in the classification of the resource.

Mineral Resources have been classified on the basis of confidence in geological and grade continuity using the drilling density, geological model, modelled grade continuity and conditional bias measures (kriging efficiency where available). The block model validation results show good correlation between the input data to the estimated grades. The mineralised domains have demonstrated sufficient geological and grade continuity to support the definition of a Mineral Resource, and classifications were applied under the guidelines of the JORC Code (2012 Edition).



ORE RESERVES

Measured and Indicated Mineral Resources are considered for conversion to Ore Reserves, based on assessment against an optimised pit design and with respect to the modifying factors. The Mineral Resource is inclusive of the Ore Reserve.

The Ore Reserve estimation model for Savage River includes Mineral Resources from the North Pit, Centre Pit South and South Deposit, and was developed as part of a Feasibility Study that was completed in September 2006.

Pit designs are based on optimised shells using Whittle software. The cutoff grade of 15%DTR was determined as part of the Feasibility Study and is reviewed periodically. Current Mining and recovery factors are applied to account for mining practices of conventional bulk mining methods utilizing hydraulic face shovels, dump trucks and conventional drill and blast. These are based on reconciliations calculated periodically for the different areas of the deposit. Metallurgical factors are applied to account for mill performance. Localised risk factors are also applied to specific areas to account for geotechnical risk. The overall pit slope criteria used for the design and optimization are based on ongoing geotechnical studies which are reviewed and updated on an annual basis as part of Grange Resource's Life Of Mine Planning process.

Estimates of Mineral Resources and

Ore Reserves at the Savage River Mine including Long Plains are as at the end of December 2014. Mineral Resources and Ore Reserves are categorised in accordance with the guidelines established in the JORC Code (2012 Edition)ⁱ. Estimated Measured and Indicated Mineral Resources include those Mineral Resources modified to produce the estimated Ore Reserves. Some Mineral Resources including Centre Pit North, Sprent pit and Long Plains are not classified as Ore Reserves, due to the fact that they did not demonstrate economic viability at the time of this report, and remain as Mineral Resources

The following tables represent the Mineral Resource for each part of the deposit. In each case, elemental compositions were measured from Davis Tube Concentrate. A cut-off of 15%DTR was used in the calculation of Mineral Resources.

Mineral Resource Estimate - North Pit - December 2014

	Measured Resources	Indicated Resources	Inferred Resources	TOTAL Resources
Tonnes (Mt)	27.2	74.3	36.3	137.8
DTR (%)	61.5	56.5	55.0	57.1
Fe (%)	68.0	67.7	67.5	67.7
Ni (%)	0.03	0.04	0.04	0.03
TiO ₂ (%)	0.96	0.92	1.01	0.95
MgO (%)	1.63	1.79	1.84	1.77
P (%)	0.008	0.009	0.008	0.009
V (%)	0.38	0.36	0.36	0.37
S (%)	0.04	0.05	0.04	0.04

Mineral Resource Estimate – South Deposit - December 2014

	Measured Resources	Indicated Resources	Inferred Resources	TOTAL Resources
Tonnes (Mt)	9.6	8.7	9.0	27.3
DTR (%)	44.7	44.9	42.8	44.2
Fe (%)	67.4	67.7	67.5	67.5
Ni (%)	0.07	0.06	0.06	0.06
TiO ₂ (%)	0.65	0.71	0.66	0.67
MgO (%)	1.81	1.71	1.74	1.76
P (%)	0.009	0.007	0.008	0.008
V (%)	0.28	0.27	0.26	0.27
S (%)	0.14	0.13	0.15	0.14

Mineral Resource Estimate – Centre Pit South - December 2014

	Measured Resources	Indicated Resources	Inferred Resources	TOTAL Resources
Tonnes (Mt)	22.8	18.1	10.3	51.2
DTR (%)	49.5	43.8	46.3	46.8
Fe (%)	68.5	67.4	68.1	68.0
Ni (%)	0.05	0.06	0.06	0.05
TiO ₂ (%)	0.43	0.40	0.38	0.41
MgO (%)	1.34	1.77	1.63	1.55
P (%)	0.009	0.012	0.011	0.011
V (%)	0.43	0.39	0.41	0.41
S (%)	0.16	0.21	0.19	0.18

Mineral Resource Estimate – Centre Pit North - December 2014

	Measured Resources	Indicated Resources	Inferred Resources	TOTAL Resources
Tonnes (Mt)	14.9	28.8	18.5	62.2
DTR (%)	53.5	52.2	46.5	50.8
Fe (%)	67.9	68.1	68.0	68.0
Ni (%)	0.05	0.05	0.05	0.05
TiO ₂ (%)	0.40	0.37	0.40	0.39
MgO (%)	1.63	1.52	1.61	1.57
P (%)	0.012	0.011	0.011	0.011
V (%)	0.37	0.36	0.35	0.36
S (%)	0.14	0.17	0.19	0.17

Diamond drilling through 2014 has supported wireframe adjustments that inform the model at Centre Pit. This has improved confidence in some areas of the estimation with an increase in Measured Resource with a commensurate decrease in Inferred Resource. The boundaries between the models have also been adjusted for scheduling purposes. This has resulted in an increase in resource at Centre Pit from the previous reporting period.

GRANGE

RESOURCES

Mineral Resource Estimate – Sprent - December 2014

	Measured Resources	Indicated Resources	Inferred Resources	TOTAL Resources
Tonnes (Mt)	0.0	2.1	0.3	2.4
DTR (%)	0.0	51.1	49.8	51.0
Fe (%)	0.0	69.6	70.8	69.8
Ni (%)	0.00	0.06	0.02	0.06
TiO ₂ (%)	0.00	0.50	0.18	0.46
MgO (%)	0.00	0.75	0.47	0.72
P (%)	0.000	0.008	0.010	0.008
V (%)	0.00	0.43	0.46	0.44
S (%)	0.00	0.27	0.06	0.24

Mineral Resource Estimate – Long Plains - December 2014

	Measured Resources	Indicated Resources	Inferred Resources	TOTAL Resources
Tonnes (Mt)	0.0	25.4	82.2	107.6
DTR (%)	0.0	33.9	35.6	35.2
Fe (%)	0.0	68.9	69.4	69.3
Ni (%)	0.00	0.05	0.03	0.03
TiO ₂ (%)	0.00	0.63	0.56	0.57
MgO (%)	0.00	0.91	0.92	0.91
P (%)	0.000	0.004	0.007	0.007
V (%)	0.00	0.33	0.36	0.35
S (%)	0.00	0.05	0.07	0.07

Mineral Resource Estimate – Stockpiles - December 2014

Stockpiles-Measured	Tonnes (Mt)	Grade (%DTR)
Crushed Ore	0.1	46.6
In-pit Broken stocks	1.5	44.6
Total	1.6	44.8

The total Mineral Resource for Savage River as at the end of December 2014 is as follows:

Mineral Resource Estimate – Savage River - December 2014

	Measured	Indicated	Inferred	TOTAL
	Resources	Resources	Resources	Resources
Tonnes (Mt)	76.1	157.4	156.6	390.1
DTR (%)	52.9	49.9	42.6	47.7
Fe (%)	68.1	68.0	68.6	68.2
Ni (%)	0.05	0.05	0.04	0.04
TiO ₂ (%)	0.65	0.69	0.64	0.66
MgO (%)	1.56	1.58	1.30	1.47
P (%)	0.009	0.009	0.008	0.009
V (%)	0.38	0.36	0.36	0.36
S (%)	0.11	0.10	0.09	0.10

The following tables represent the Ore Reserve for each part of the deposit. In each case, elemental compositions were measured from Davis Tube Concentrate. A cut-off of 15%DTR was used in the calculation of Ore Reserves.

Reserve Estimate - North Pit - December 2014

	Proved Reserves	Probable Reserves	TOTAL Reserves
Tonnes (Mt)	23.7	53.9	77.6
DTR (%)	57.0	52.8	54.1
Fe (%)	68.0	67.9	67.9
Ni (%)	0.03	0.03	0.03
TiO ₂ (%)	0.99	0.95	0.97
MgO (%)	1.58	1.67	1.64
P (%)	0.008	0.008	0.008
V (%)	0.39	0.37	0.38
S (%)	0.04	0.05	0.04

Reserve Estimate – South Deposit - December 2014

	Proved Reserves	Probable Reserves	TOTAL Reserves
Tonnes (Mt)	6.9	1.8	8.7
DTR (%)	42.1	42.7	42.2
Fe (%)	67.5	67.8	67.5
Ni (%)	0.07	0.06	0.06
TiO ₂ (%)	0.67	0.71	0.68
MgO (%)	1.80	1.53	1.75
P (%)	0.009	0.007	0.008
V (%)	0.28	0.27	0.27
S (%)	0.14	0.13	0.14

Reserve Estimate – Centre Pit South - December 2014

	Proved Reserves	Probable Reserves	TOTAL Reserves
Tonnes (Mt)	8.5	3.7	12.2
DTR (%)	45.3	37.3	42.9
Fe (%)	68.6	67.2	68.2
Ni (%)	0.05	0.06	0.05
TiO ₂ (%)	0.38	0.34	0.37
MgO (%)	1.39	2.00	1.58
P (%)	0.011	0.016	0.013
V (%)	0.43	0.35	0.40
S (%)	0.14	0.22	0.17

Diamond drilling around Centre Pit and re-estimation has resulted in an increase in proven reserves.

Ore Reserve Estimate – Stockpiles - December 2014

Stockpiles-Measured	Tonnes (Mt)	Grade (%DTR)
Crushed Ore	0.1	46.6
In-pit Broken stocks	1.5	44.6
Total	1.6	44.8

The total Ore Reserve for Savage River as at the end of December 2014 is as follows:

Ore Reserve Estimate – Savage River- December 2014

	Proved Reserves	Probable Reserves	TOTAL Reserves
Tonnes (Mt)	40.7	59.4	100.1
DTR (%)	51.5	51.6	51.5
Fe (%)	68.0	67.8	67.9
Ni (%)	0.04	0.04	0.04
TiO ₂ (%)	0.80	0.91	0.87
MgO (%)	1.58	1.69	1.64
P (%)	0.009	0.008	0.009
V (%)	0.38	0.37	0.37
S (%)	0.08	0.06	0.07

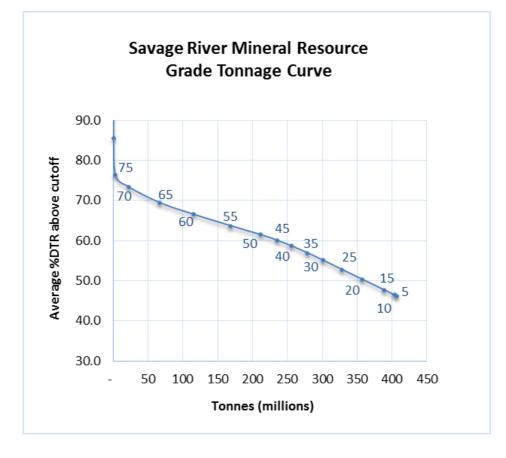
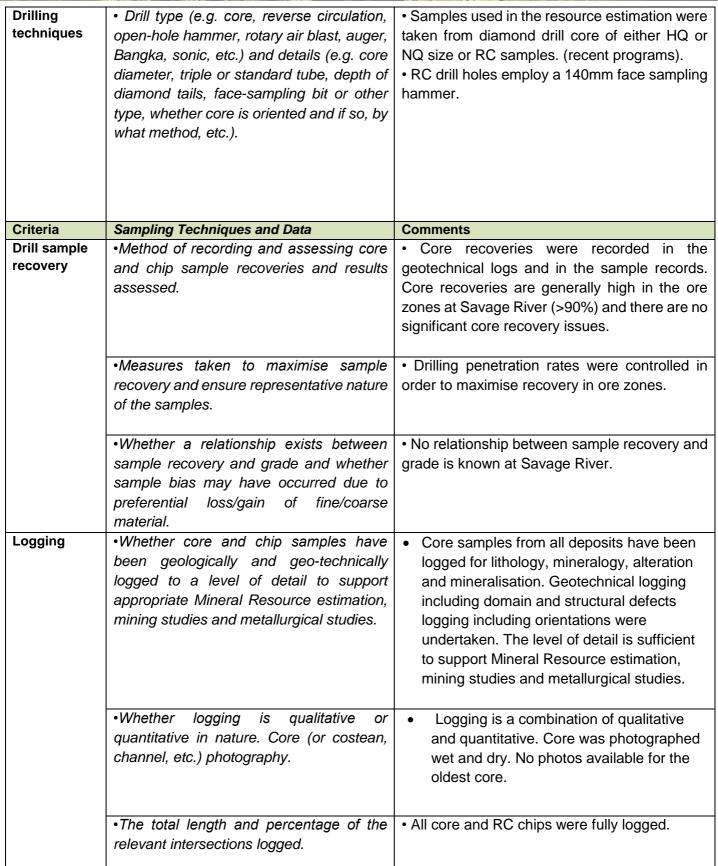


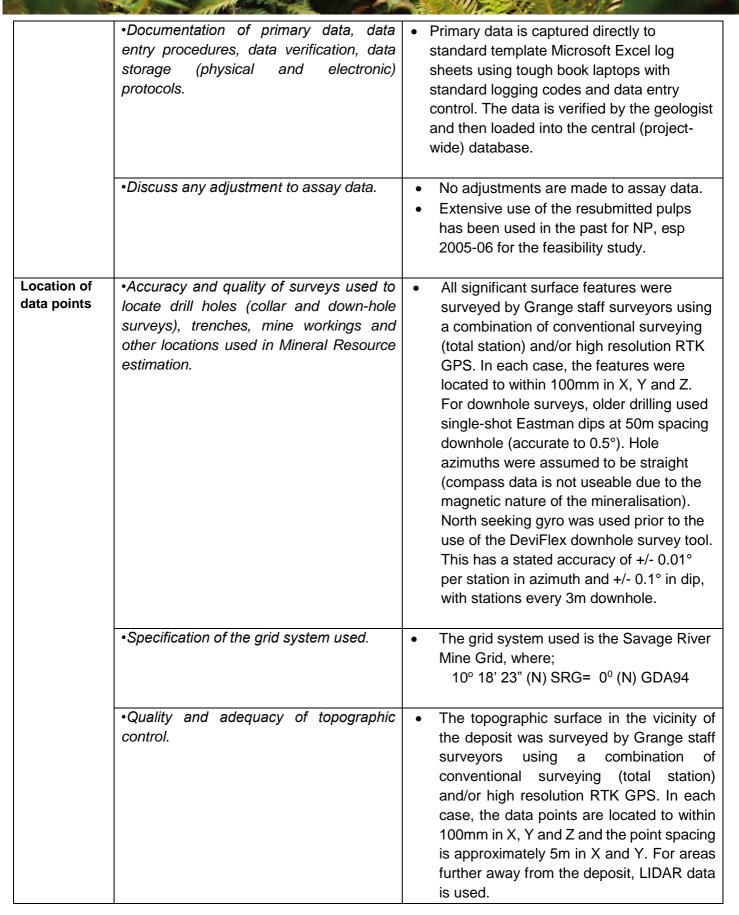
Figure 4 - Grade Tonnage Curve, Savage River


JORC TABLE 1 SAVAGE RIVER

SECTION 1 SAMPLING TECHNIQUES AND DATA

Note: All comments refer to all deposits on the Savage River Mining Lease; comprising North Pit, Centre Pit North, Centre Pit South, Sprent and South Deposit and to Long Plains on an adjacent exploration lease) unless individually identified as being related to a particular prospect.

Criteria	Sampling Techniques and Data	Comments
Sampling	• Nature and quality of sampling (e.g. cut	The deposits were sampled using diamond
techniques	channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	drilling (DD) with limited Reverse Circulation (RC) pre-collaring. Drilling was conducted on approximately 100m spaced sections orientated perpendicular to the overall orebody strike. On section spacing (down-dip) varies but is commonly 50-70m. The mineralisation is sub- vertical and the holes are typically inclined at - 60°. All samples are assayed for DTR, Fe2+, Total Fe, Ni, TiO2, MgO, P, V, S, CaO, SiO2 and Al2O3. CaO, SiO2 and Al2O3 are not presently estimated.
	• Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	was used to obtain the best possible sample quality for lithology, structural, grade and density information.
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Drilling of Diamond core was a combination of HQ and NQ sizes, some triple tube. Samples were controlled based on geological contacts and generally no more than 2m in length. Sample selection was nominally >=0.75m and <=1.25m. All core samples were half cored. Core was split by diamond sawing. Samples were dried, crushed, split and pulverised to nominally 98% passing 75µm for Davis Tube Recovery (DTR) determination.


3

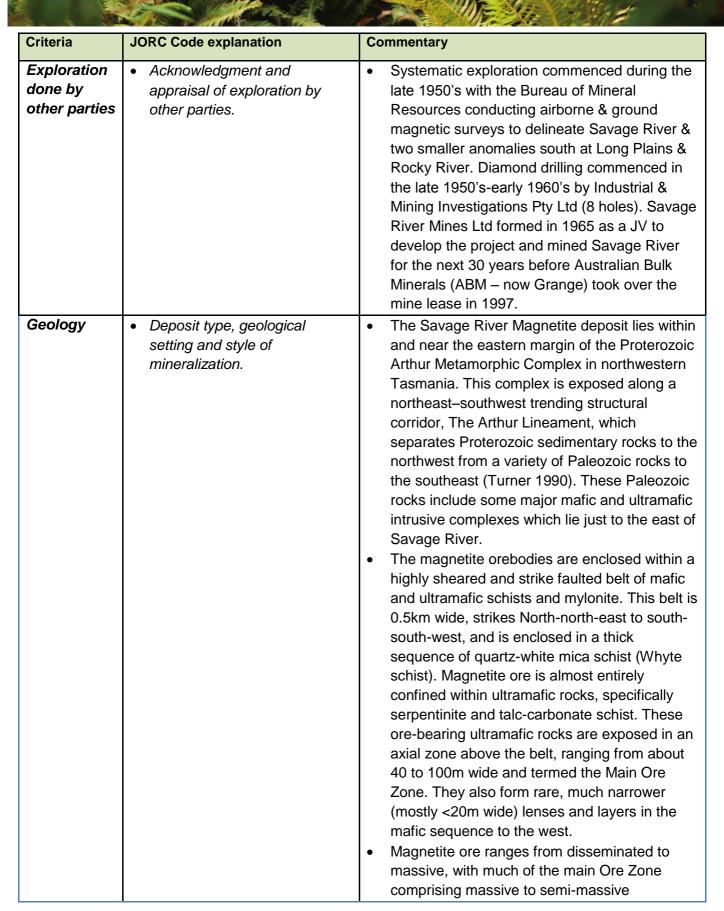
a de a		
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, 	 Core was half core sampled as standard practice and rarely full core sampled in the very few older holes. Core was cut using a diamond impregnated saw blade on site at the Savage River core farm. The ore is relatively massive and the preferred orientation for core sawing is just left of the orientation line. For non-core, samples are dry riffled and
	rotary split, etc. and whether sampled wet or dry.	sampled dry.
	•For all sample types, the nature, quality and appropriateness of the sample preparation technique.	• Sample preparation techniques were industry standard for magnetite ores and use the sub- sampling protocol as recommended by the Savage river laboratory. Sample prep on recent drill core was completed at a commercial lab [NATA accredited]. The half core samples were oven dried at 110 degrees for 12 hours, then coarse crushed to minus 2mm on a Boyds crusher then split to ~3kg, crushed again to 90% passing 1.7mm and split again with a 150g sub-sample taken for pulverising to 98% passing 75 microns.
	•Quality control procedures adopted for all sub-sampling stages to maximise the representativeness of samples.	 RC chips were riffle split when dry and a 3kg sample was taken for each single metre drilled. When RC sample was damp, samples were speared uniformly. When RC sample in ore was RC holes were stopped and completed later for diamond tails.
	•Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Limited numbers of duplicate samples were taken for intervals of HG, MG and LG within the RC drilling suite. Field QC procedures for RC and diamond samples involve the insertion of assay standards at a rate of 1 in 25. Standards were derived from 2006 MLEP drilling campaign in North Pit Savage River.

	•Whether sample sizes are appropriate to the grain size of the material being sampled.	• The sample sizes are considered to be appropriate based on the style of mineralisation, the thickness and consistency of the intersections and assay range for the primary analysis (% recoverable magnetite concentrate).
assay data and	•The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	• The primary assay technique is Davis Tube Recovery (DTR) on a 10g sample, followed by Ferrous Iron (Fe ²⁺) via Satmagan and S, total Fe, TiO ₂ , MgO, V, P, S and Ni via XRF on the Davis Tube Concentrate (DTC). All techniques are considered total. DTR is the most appropriate assay technique for determination of magnetite recovery. All DTR samples completed on site using Savage River technique. This technique has been use for 40 years at Savage River and pit reconciliations are good.
Quality of Assay Data continued	•For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 Magnetic susceptibility instruments are used for initial geological logging to help the geologist classify the logged interval as ore grade or waste. Ore samples have sample prep, DTR and XRF determinations done and these inform the resource estimate. No mag sus values are used in the resource estimate.
	•Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	• Field assay standards are inserted at a rate of 1 in 25 in drilled core and RC through ore zones. DTR determinations are performed in duplicate. Limited field duplicates were analysed. No external laboratory checks have been performed and no check assaying has been undertaken. Data analysis has been performed and the data demonstrates sufficient accuracy and precision for use in Mineral Resource estimation.
of sampling	•The verification of significant intersections by either independent or alternative	 Significant intersections are verified by alternative company personnel.
	company personnel.	
Γ	•The use of twinned holes.	No twinned holes have been drilled.

 	B/ IS NORS
Sold and	11 - 40
1000	

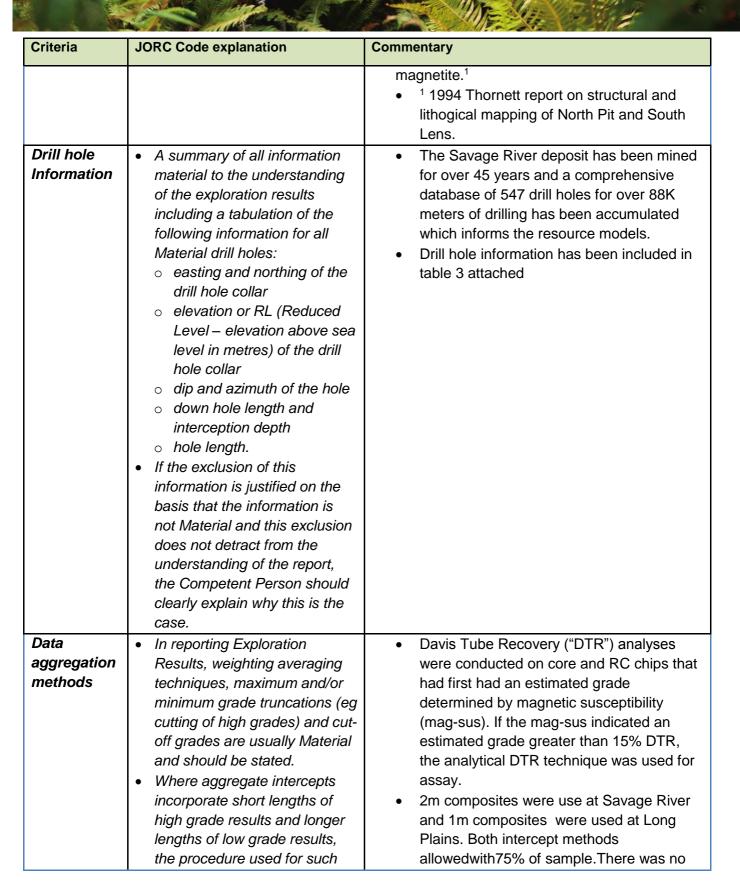
1

	E	
•Data spacing for reporting of Exploration Results.	•	For Deposits on the Savage River Mine lease the nominal drill hole spacing is 50m (between sections) and by 50-70m (on section). Drill spacing at Long Plains is wider given that the parts of the resource are at an early stage of delineation. Indicated Mineral Resources at Long Plains have been defined generally in areas of 50 by 50 m drill spacing. Inferred Mineral Resources at Long Plains have been defined in areas of 100x100 metre up to 600x100 metre drill spacing.
•Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.		Data spacing and distribution were analysed using semi-variograms. The general quality of the experimental variograms was good. The ranges of the variograms were used to provide guidance for resource classification.
applied.		Samples have been composited prior to geostatistical analysis and Mineral Resource estimation. At Savage River Mine, the composite length was 2m. At Long Plains, the composite length was 1m.
	 Results. •Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. •Whether sample compositing has been 	Results. • •Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. • •Whether sample compositing has been •

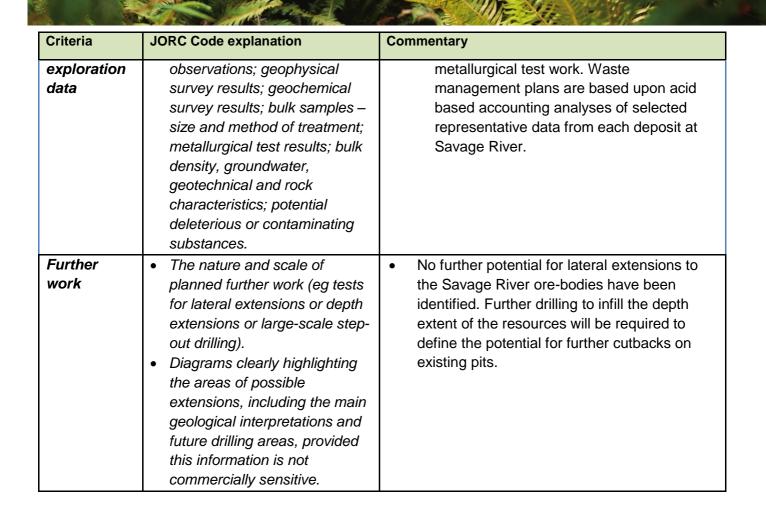

Criteria	Sampling Techniques and Data	Comments
Orientation of data in relation to geological structure	•Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 The majority of drill holes are oriented to achieve intersection angles as close to perpendicular to the mineralization as is practicable.
	•If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 No significant sampling bias occurs in the data due to the orientation of drilling with regards to mineralized structures/bodies.
Sample security	• The measures taken to ensure sample security.	 All samples are logged and bagged on site by Grange geological staff and assay determinations are performed by Grange staff.
Audits or reviews	•The results of any audits or reviews of sampling techniques and data.	 During the Mine Life Extension Project in 2006 AMC peer reviewed the NP resource for the mine life extension project (MLEP). A sample prep audit was conducted for the external provider. No audits or reviews have been undertaken on SR lab recently.

SECTION 2 REPORTING OF EXPLORATION RESULTS

1


Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 3 Mining and 2 exploration leases are held in Tasmania and are 100% owned by Grange Resources Tasmania Ltd. (formerly Goldamere Proprietary Ltd operating as Australian Bulk Minerals). Mining lease 2M/2001 was granted 11/12/2001 comprising 4,987 hectares which includes the main orebodies North Pit (NP), South Lens (SL), Centre Pit north (CPN), Centre Pit South (CPN), Sprent (SP) and South Deposit (SD) and the pipeline corridor from site to the Port Latta pellet plant. Locality is listed as Savage River-Port Latta. This lease expires 7 Nov 2031 and currently has a security bond held by the State of Tasmania. Land tenure on ML 2M 2001 includes; State forest, Forest Reserve, Informal reserve,Crown Land, Private parcel, Conservation area, Regional Reserve and national Estate. Mining lease 14M/2007 was granted 14/5/2008 comprising 91 hectares as an easement (including a sewerage easement) on the Savage River townsite. This lease expires 7 Nov 2031 and no bond is held by the State of Tasmania. Land tenure on ML 14M/2007 includes:Forest Reserve, Regional Reserve, Private land, Proposed public reserve-CLAC, Crown land Authority Land and Crown Land Mining lease 11M/2008 was granted 3/3/2009 comprising two lots totaling 108 hectares with the north west area required for the South Deposit Tailings Storage facility on Main Creek and the eastern lot required to cover the remaining part of the Savage river town ship not previously covered by a mining lease. This lease covers the pending at time of writing, remains in good standing and a bond is held by the State of Tasmania. Exploration Lease EL30/2003 was granted for an 11sq km lease north of 2M-2001 during 2014. Exploration Lease EL30/2003 was granted in February 2010 and current tenure expires 18 June 2014 but is renewable. This lease covers the entire Long Plains deposit. The lease comprises 38 sq km and adjoins 2M/2001 to the north.

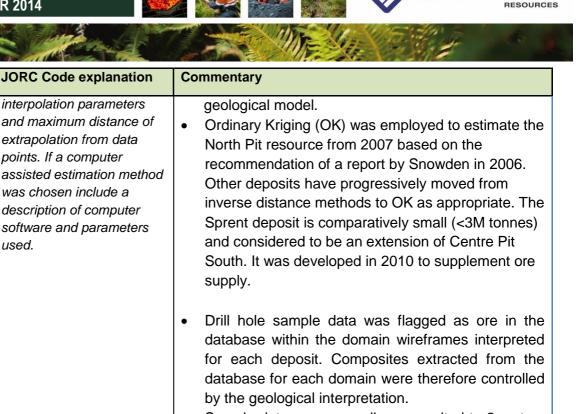
RESOURCES


1 Parts	
	 1
	100
1-12-	2011

Critoric	IORC Code explanation	Commentary
Criteria	JORC Code explanation	Commentary
	 aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 cutting of high grades based on statistical analysis. Sampling protocol insists on samples between 0.75 and 1.25m in length within unique lithologies. Short intervals were sampled, where discrete lithologies were present. The compositing routine aggregates these to 1m composites.
Relationship between mineralizati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralization with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Plans and sections included in attachment
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 A locality plan (figure 5) and typical cross sections (figure 6-8) for each deposit area are attached.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All individual drilling results have been incorporated into the resource estimations. See table 3 attached
Other substantive	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological	 The Savage River Mine has been in operation for 45 years with substantial data collected including geophysical surveys, geological mapping of exposures and
L	34a Alexander St, B	

RESOURCES

SECTION 3 ESTIMATION & REPORTING OF MINERAL RESOURCES


Criteria	JORC Code explanation	Commentary
Database integrity Site visits	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. Data validation procedures used. Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken 	 Transcription errors are limited by having assay data directly merged into the database with key fields on sample ID. Visual validation in 3D is utilized having sections plotted with block grades, the drill-hole assays and geology intervals displayed. Validation of the database occurs at distinct stages. Data entry – data is mostly entered into Excel spreadsheets, controlled by lookup lists and ranges of acceptable values. Before upload to the database – data is cross-checked in Excel. Before extracting composites – a set of queries are run, checking for data continuity, abnormal values and overlapping ranges. At all stages spot checks are made on specific areas against raw data or core where available, to check for accuracy and/or correlation. Where applicable, data is plotted out on section or graphically for visual checking. Competent person works on site and has an intimate knowledge of the operation. All pits have mining history, with North Pit and South Deposit being mined currently.
Geological interpretation	 indicate why this is the case. Confidence in (or conversely, the uncertainty of) the 	 Each section was interpreted for magnetite mineralization in a live-3D environment, i.e. the sections were not printed out for interpretation
	 Internating of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on 	 sections were not printed out for interpretation purposes. The work was all done in Geovia Surpac. Historically, there were three types of mineralization defined (termed sparse, moderate and abundant and given the codes ZS, ZM and ZA respectively). Recent practice has been to amalgamate the ZM and ZA. The mineralized zones were therefore subdivided into moderate and high grade (ZAZM, >35 DTR) and low grade (ZS 15-35 DTR) categories. The geological interpretation has high confidence on

Criteria	JORC Code explanation	Commentary
	 Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 a deposit scale, informed by regularly spaced drilling, in-pit mapping, grade control drilling and monthly reconciliations. The boudinaged nature of the high grade lenses does sometimes result in some areas having to be adjusted by on ground mapping and grade control, during mining. Geology, lithology and structure are used to guide and control the interpretation and wireframing of ore lenses in preparation for resource estimation. Wireframes are validated in section, then in plan (flitch) to enable robust shapes to be developed. Continuity is greatest down dip owing to the strikeslip deformation at Savage River. Continuity along strike is characterized by discontinuous swarms of boudinaged high grade magnetite lenses surrounded by lower grade magnetite ore hosted in serpentinite gangue.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The Savage River ore-bodies occur discontinuously over a strike length of 6km with thickness ranging from 40-150m. All lenses remain open at depth. A summary of the defined extents of individual deposits follows: Deposit Extent (m) Extent (m) Extent (m) North Pit 2,400 250 800 Centre Pit 6 6 200 500 South 1,140 250 400 Sprent 250 50 150
Estimation and modeling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining,	 Estimations have generally been undertaken by Grange staff using recommendations and parameters defined in variographic studies completed by Snowden Mining Industry Consultants. Mineralized domains were established from high grade and low grade intersects as interpreted in the

used.

Criteria

• Sample data was generally composited to 2 metres down hole length using a best fit-compositing method. Residual samples (those composite intervals for which there was less than 75% of the composite length) were considered biased and hence were not included in the estimate.

Snowden have recommended top cuts as tabled • below to reduce the impact of significant outliers and positively skewed populations.

No top cuts have been applied to the Centre Pit • South or Sprent models.

Domain	DTR	DxDTR	Density	Fe2+	Fe	Ni	TiO2	MgO	Р	v	S
ZAZM	-	-	-	-	-	7	0.1	-	0.25	-	0.5
ZS	-	4.2	350	-	-	7.5	0.73	0.03	-	-	-
WL	-	3.71	218	-	-	-	-	-	-	0.97	-
			т	op Cut	s - Sout	th Depo	sit				
Domain	DTR	DxDTR	Density	Fe2+	Fe	Ni	TiO2	MgO	Ρ	V	S
East	-	-	-	-	-	-	-	-	0.03	-	0.3
West	-	-	-	-	-	-	-	-	0.02	-	0.1
			То	p Cuts	- Centr	e Pit N	orth				
Domain	DTR	DxDTR	Density	Fe2+	Fe	Ni	TiO2	MgO	Ρ	V	S
ZAZM	-	-	-	-	-	0.5	1.22	7.5	0.08	0.8	0.
ZS	-	-	-	-	-	-	1.27	7.5	0.05	-	1.3
WL	-	-	-	-	-	-	1.22	-	-	-	-

DTR is not directly estimated but instead weighted by density with which it has a very strong correlation. Density values and the calculated attribute Density x DTR are both subjected to variography and estimation, with DTR back calculated in the model.

A DAY HIS		1	A	22	IF			22	12			- Carl
Criteria	JORC Code explanation	Com	nenta	iry								
	interpolation parameters and maximum distance of extrapolation from data points	 Grange personnel have generally created the block models and run the estimations with Geovia Surpac software using in-house estimation macros to ensure consistency of methodology. Block models were constructed for each deposit using a 10mE by 10mN by 5mRL parent block size with sub-celling to 5mE by 5mN by 2.5mRL. Variography studies for each deposit have been completed by Snowden Consultants with recommendations for estimation parameters appropriate for each deposit and the modelling technique employed as tabulated below. 						rpac sure posit size				
						Estim	ation Para North Pit	meters				
		Ele	ement		irection Strike	Direction 2 Dip	Directio 3 Acros Strike	is Sei	ni- M jor R	lajor/ Iinor Latio	Min Samp	Max Samp
			ain Ore Zo nsity	one ZAZN	1		1					
		an		1	70	23	12	3		6	12	32
				2 3	150 300	50 100	25 50			6 6	12 12	32 32
		De	ain Ore Zo									
		and_	1 x_dtr	1 2	50 100	17 33	17 33	3		3	20 20	32 32
		w	est Lens N	3	300	100 (ZAZM ar	100	1		3	20	32
		De	nsity 1	1	50	17	17	3	3	3	20	32
			x_dtr	2	100	33	33	3		3	20	32
				3	300	100	100	3	3	3	20	32
						South 1	Deposit	Major/				
		Elemen	t Pass	Bearing (Z)	g Plung (X)		Major Axis (m)	Major/ Semi- major	Major/ Minor Ratio	Min Samp	Max Sam	
			ns Minera	alised Don	nains (ZAZ	ZM and ZS		Ratio		1	1	
		Density and d_x_dtr	1	0	10	-80	50	1.2	6	2	32	
			2	0	10 10	-80 -80	90 180	1.2 1.2	6 6	2	32 32	
		-				ZM and ZS		1.2	0	1 -		
		Density and d_x_dtr	_	25	0	-90	100	2	10	2	32	
			2	25 25	0	-90 -90	150 300	2 2	10 10	2	32 32	
		Elemen	t Pass	Bearing (Z)			Major Axis	Major/ Semi- major	Major/ Minor	Min Samp	Max Sam	
		Minera	lised Dom		M and ZS		(m)	Ratio	Ratio		1	
		ALL	1	20	0	-80	60	1.7	3	2	32	コ
			2	20 20	0	-80 -80	150 300	1.7 1.7	3	2	32 32	

3

Criteria	JORC Code explanation	Com	mentary							
		Elen	nent Pass	Direction 1 Strike	Direction 2 Dip	tre Pit North Direction 3 Across Strike	Major/ Semi- major Ratio	Major/ Minor Ratio	Min Samp	Max Samp
		Dens					ſ			<u> </u>
		and 	_dtr2	60 150	40	10 25	1.5 1.5	6 6	2	32 32
		Mair	3 n Ore Zone ZS	300	200	50	1.5	6	2	32
		Dens and d_x_	. 1	60	30	15	2	4	2	32
			2	150 300	75 150	38 75	2	4	2	32 32
		West Dens and	t Lens Minerali	sed Domains (2	ZAZM and Z	S)	5	4	2	32
			dtr 2	150	30	38	5	4	2	32
			3	300	60	75	5	4	2	32
	estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	n b	nodel est nodel arc been recc ralidation	und new nciled w	ith prod	le data i	n secti	on, and	d have	
	The assumptions made regarding recovery of by-products.	• N	lo byproc	luct reco	overies h	nave bee	en cons	siderec	l.	
	Estimation of deleterious elements or other non- grade variables of economic significance (eg sulphur for acid mine drainage characterization).	h a	Concentra have all h hvailable a nethod w	ad variog and were	graphy c e estima	complete Ited usin	ed whe	re sam	ples v	
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	s g a	Sample sj size. This jeologica sbove.	sample continu	spacing ity (low :	is suppo sample v	orted b varianc	y the v ce). Se	very st e table	rong es
	Any assumptions behind modelling of selective mining units.		lo assum nining un	-	vere mad	de behin	d mod	eling o	f selec	tive
	Any assumptions about correlation between variables.		⁻ here is a vhich is d	-						-
	Description of how the	• 0	Geology,	lithology	and stru	ucture a	re useo	d to gu	ide an	d

34a Alexander St, Burnie Tasmania 7320

Criteria	JORC Code explanation	Commentary
	 geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. 	 control the interpretation and wire-framing of ore lenses in preparation for resource estimation. Wireframes are validated in section, then in plan (flitch) to enable robust shapes to be developed. Top cuts were used where recommended by geo- statistical data analysis.
	 The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. New model estimates are compared against old model estimates and reconciliations as part of validation. 	Block estimates were cross-validated by comparison with printed block sections showing drilling, block values and constraining wireframes.
Moisture Cut-off	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. The basis of the 	Tonnages were estimated on a dry basis
parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 The cut-off grade of 15%DTR is based on a natural break in the Grade-Tonnage Curve and is supported by economic analysis undertaken during 2010.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining	 No mining factors (i.e. dilution, ore loss, recoverable resources at selective mining block size) have been applied. Selective mining unit is block model parent size for each model, and the equipment selection allows for finer discretization.

Criteria	IOPC Code evaluation	Commonitory
Criteria	JORC Code explanation	Commentary
Metallurgical factors or assumptions	 methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical 	 DTR has been incorporated into the model as a measure of magnetite recovery in the magnetic separation process. This is based on the performance of DTR at the Savage River mine, where it has been employed as a good measure of delineating ore and waste and in modeling the anticipated recoveries through the magnetic separation process for over 45 years. Historical records indicate the Metallurgical recovery of magnetite from the magnetic separators has been demonstrated to be 95% of the DTR derived from laboratory DTR process. This factor is not applied to the resource model.
Environmen- tal factors or assumptions	 Assumptions made. Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. 	 Waste rock: waste is segregated while mined into one of four waste types based on the rocks acid-base chemistry. These units are disposed of in encapsulated dumps according to the waste management plan as part of the environmental permit conditions. Tailings are disposed of as sediment beaches in engineered tailing ponds. The tailings management plan is part of the environmental permit conditions.

3

Criteria	JORC Code explanation While at this stage the	Commentary
	While at this stage the	
Bulk density	 determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 All 'modern' (post-2005) diamond drilling samples have measured density values. However, some historic drilling samples do not have density data and it is not possible to measure density for RC samples. The density of the ore for the RC samples and legacy diamond drilling samples was determined based on the first principles equation, where: SG = (^{DTR}/₅₁₀ + ^{100-DTR}/₂₈₁)⁻¹ The First Principles equation relates density to DTR and provides a reasonable fit to the measured data. Density is related to DTR because the gangue mineralogy generally has a lower specific gravity than that of magnetite. The ore zones at Savage River are very competent and void space is not considered significant to make allowance for in the density determination method.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	 During the Mine Life Extension Project in 2006, AMC peer reviewed the NP resource estimation process and parameters for the mine life extension project (MLEP). The estimation process and parameters are

4

Criteria	JORC Code explanation	Commentary
Criteria	 Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to technical and economic 	Commentary considered to be still valid for this deposit as additional drilling has been infill in nature. Several due diligence studies have reviewed the estimation methodologies as recommended by Snowden and found them to be valid • Global reconciliations and bench reconciliations are used to feedback into the resource model. Regular reconciliations show a good performance of model vs actual. • Reconciliations are calculated from material survey movement against changes in stockpiles and actual magnetite concentrate production. • Grange believes that the relative accuracy and confidence in the Mineral Resources is appropriate for the generally- accepted error ranges understood by the resource confidence categories which have been allocated • Historically, model predictions have been well within 10% of actual production.
	be relevant to technical and economic evaluation. Documentation should include assumptions	
	 made and the procedures used. Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a 	

3

Criteria	JORC Code explanation	Commentary
	 material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage. It is recognized that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	

Section 4 Estimation and Reporting of Ore Reserves

(Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral Resource estimate for conversion to Ore Reserves	 Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve. Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves. 	 The Ore Reserve estimate for Savage River includes Mineral Resources from North Pit, Centre Pit and South Deposit. The Mineral Resources used are from updated Mineral Resource models for each deposit as at 31 Dec 2014. The stated Mineral Resource is inclusive of the Ore Reserve
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 The Competent Person has more than 10 years of experience in an open pit Magnetite mine at senior operational management and technical level. Competent person is an employee of the company.
Study status	 The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves. The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered. 	 This Ore Reserve estimate is based on a Feasibility Study that was completed, in September 2006. The information used for estimation and reporting of this Ore Reserve is based upon that Feasibility Study with current production reconciled modifying factors. The Life Of Mine Plan process is undertaken annually which encompasses reviews of conversion of mineral resource to ore reserve and assessment of current economic and other reconciled modifying factors.

Criteria	JORC Code explanation	Commentary				
Cut-off parameters	The basis of the cut-off grade(s) or quality parameters applied.	 Cut-Off-G the Feasi basis as 	Grade Analy ibility Study part of Gra rocess. The	and is up ange Reso	dated on urce's Life	an annual e Of Mine
<i>Mining factors or assumptions</i>	The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimization or by preliminary or detailed design).	 The Whitt pit outline design. algorithm used in t upon the Study and Of Mine F The Ore 	tle optimize which is th The softw s to genera the Whittle parameter d are review Planning an Reserves t designs w	r is used to nen used a vare uses ate pit she optimizer s determine ved as part d evaluation are reporte	derive an s the basi profit ma Ils. The c were bas ed in the of The or n process. ed within	economic s for mine aximization cost inputs ed initially Feasibility ngoing Life a detailed
	• The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc.	methods trucks an suited to t The overa optimizati undertake reviewed Grange R	be undertal utilizing h nd conventi the local ter all pit slopes on are base on are base and update and update esource's l	ydraulic fa onal drill a rain. s used for the asibility Stu d on an an life Of Mine lope param	ace shove and blast he design echnical st idy and ar nual basis e Planning ieters are	els, dump , which is and udies e ; as part of process. as follows:
	The assumptions made regarding	Pit		Overall Slo degro		
	geotechnical		East	West	North	South
	parameters (eg pit slopes, stope sizes,	North Pit	48	33	32	25
	etc), grade control	Centre Pit	44	32	35	36
	and pre-production drilling.	South Deposit	40	38	36	42
	drilling.		40	38	36	42

Criteria	JORC Code explanation	Commentary
		• The Smallest Mining Unit (SMU) assumed is 5 m x 5 m x 2.5 m in the X, Y and Z direction consistent with the sub-cell resolution in the resource.
	 The major assumptions made and Mineral Resource model used for pit and stope optimization (if appropriate). The mining dilution factors used. The mining recovery factors used. 	 The mining block model includes an allowance for likely mining dilution based on a regularization of the geological model. The regularization has added approximately 2% tonnage and reduced the DTR by 8%. These factors reflect the expected ore dilution leading to a decrease in recovered grade and an increase in recovered ore volume, and are based on historic reconciliation performance. Reconciliations (global) are compiled annually and bench reconciliations are compiled as benches are completed (about 8 per year). Temporal or period reconciliations are run to check the quality of the 3 month plan cycle No minimum mining widths have been applied A risk factor of 0.8 was applied to the Centre Pit South reserve for potential loss due to wall instability. Studies will be undertaken to mitigate this risk.
	 Any minimum mining widths used. The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion. The infrastructure requirements of the selected mining methods. 	 The Whittle Optimization on which the mine design is based utilizes only Measured and Indicated Material. Ore Reserve classification is that portion of the mineral resource that resides within an economic pit design. Only Measured and indicated resources are considered. Inferred resources are not scheduled but are considered during optimizations. The current North pit design has less than 30,000 tonnes of inferred resource. The mine has introduced remote blast hole drilling, five years ago, and has recently introduced remote blast hole charging

1

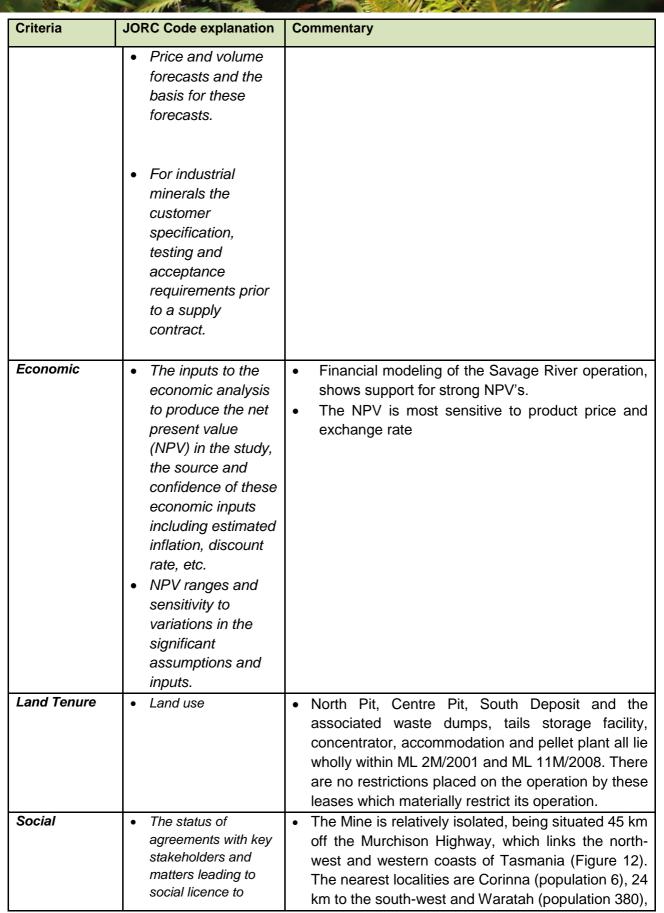
Criteria	JORC Code explanation	Commentary
<i>Metallurgical factors or assumptions</i>	The metallurgical process proposed and the appropriateness of that process to the style of mineralization.	• The Concentrator comprises primary crushing, primary and secondary grinding and magnetic separation. Concentrate is pumped by a slurry pipeline for drying, pelletizing and ship loading at the Port Latta. This process is well proven at Savage River over the last 47 years and is used extensively for magnetite deposits throughout the world.
	 Whether the metallurgical process is well-tested technology or novel in nature. The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domains applied and the corresponding metallurgical recovery factors applied. 	 The Concentrator and Pellet Plant have been have operated continuously by Grange Resources since 2009 and before by Australian Bulk Minerals since 1997. There has been metallurgical test work undertaken as part of the Feasibility Study and subsequent drilling programs. A plant recover factor of 95% is used to account for concentrator efficiency and is supported by historical performance.
	• Any assumptions or allowances made for deleterious elements.	 The Ore Reserve and the associated mine schedule produce an output on which the sale of pellet is based and includes any deleterious elements. Deleterious elements (also referred to as impurities), are identified in product specification and are estimated in the resource model. The mineral resource model appropriately addresses the chemical criteria and the emergent physical properties to meet a high quality iron ore product.

2

Criteria	JORC Code explanation	Commentary
	• The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the ore-body as a whole.	 Magnetite concentrate and hematite pellets are sold on a market specification. The mineral resource model appropriately addresses the chemical criteria and the emergent physical properties to meet a high quality iron ore product.
	• For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications?	
Environmental	The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported.	The mining and exploration tenements held by the Company contain environmental requirements and conditions that the entities must comply with in the course of normal operations. These conditions and regulations cover the management of the storage of hazardous materials and rehabilitation of mine sites. The Company obtained approvals to operate in 1996 and 1997 under Tasmania's Land Use Planning and Approvals Act (LUPA) and the Environmental Management and Pollution Control Act (EMPCA) as well as the Goldamere Act and Mineral Resources Development Act. The land use permit conditions for Savage River and Port Latta are contained in Environmental Management Plans were submitted for Savage River and Port Latta on 21 December 2010. The extension of the project's life was approved by the Department of Tourism, Arts and the Environmental Protection Notices, is the basis for the management of all environmental aspects of the mining leases. The Goldamere Act limits the

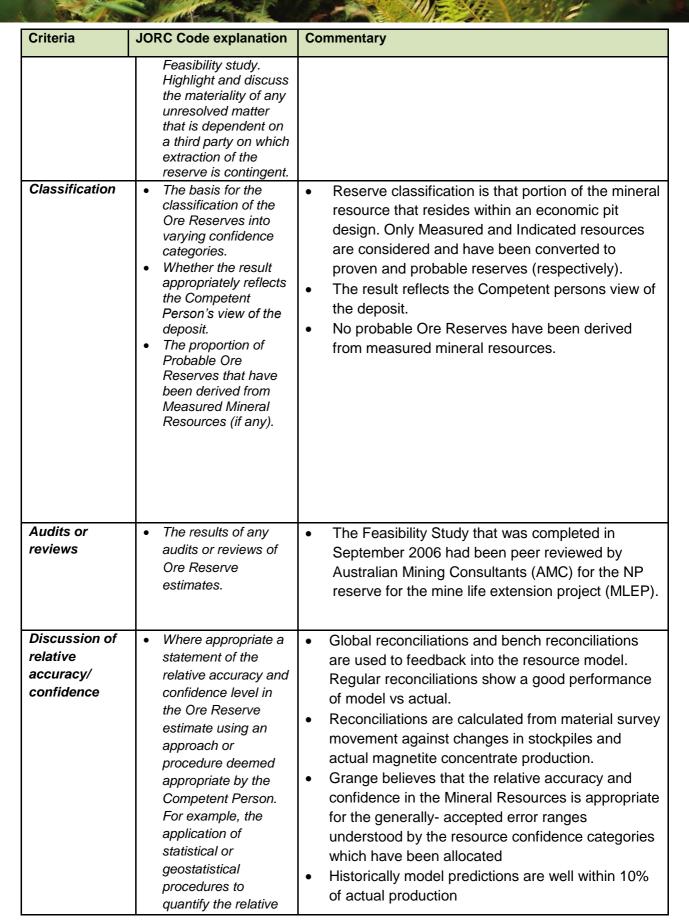
1

Criteria	JORC Code explanation	Commentary	
		 remediation of contamination to that caused by the Company's operations, and indemnifies the Company for certain environmental liabilities arising from past operations. Where pollution is caused or might be caused by previous operations and this may be impacting on Grange's operations or discharges. Grange is indemnified against any associated emissions. Grange is however required to operate to Best Practice Environmental Management (BPEM). The Goldamere Act provides overriding legislation against all other Tasmanian legislation. Grange has current approvals to mine North Pit until 2031. The waste rock from North Pit is to be segregated into potential acid forming and non-acid forming waste in the pit and then disposed of in the Broderick Creek waste rock dump which has sufficient capacity for the current life of the mine. The potentially acid forming waste is encapsulated with layers of clay and alkaline rocks to prevent the formation of acid rock drainage. Process residue from the concentration of ore (tailings) is stored in the Main Creek Tailings Dam which has sufficient capacity until 2017. Grange has received approval from the Tasmanian Environmental Protection Authority to construct and operate a new tailings storage facility called South Deposit Tailings Storage Facility. This has sufficient capacity to store tailings from North Pit, Centre Pit and South Deposit until at least 2031. Approval for this facility has been granted by the Department of Environment and the Waratah Wynyard Council. 	
Infrastructure	The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk	 Current operation consists of North Pit and South Deposit and one previously mined pit (Centre Pit) which is planned to be mined as part of the Life Of Mine Plan. There are also two primary crushers and conveyors, concentrator, pipeline and pellet processing plant with process water sourced on-site and dedicated power transmission lines. Townsite hosts a workforce of 250 persons. Concentrate is transported by slurry pipeline to the Grange-owned 	



Criteria	JORC Code explanation	Commentary	
	commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed.	Port Latta pellet plant and dedicated ship loading facility for export. The current Main Creek Tails Storage Dam (facility) will be closed in 2017 and the construction of a new South Deposit Tails Storage Facility will commence in March 2014. The new facility will have sufficient capacity to support the Life of Mine operation.	
Costs	 The derivation of, or assumptions made, regarding projected capital costs in the study. 	 The Life Of Mine Plan is updated annually. All assumptions regarding capital costs are reviewed monthly and as part of the annual budgeting process. Capital costs are well documented, managed and understood for the operation. 	
	 The methodology used to estimate operating costs. 	• The Concentrator and Pellet Plant have operated continuously by Grange Resources since 2009 and before by Australian Bulk Minerals since 1997. The operating and capital costs are based upon actual operating historical data.	
	 Allowances made for the content of deleterious elements. 	 Allowances are made for the various deleterious elements and adjustments are made to the Iron Content. The exchange rate is sourced from CRU (Specialist Matter Experts in the market analysis for mining and metals), with periodic updates for forecast. 	
	 The source of exchange rates used in the study. Derivation of transportation charges 	 Product is sold Free On Board from Port Latta Forecasting of treatment and refining charges including penalties in concentrate are completed annually using the scheduled annual feed grade (including impurities). 	
	• The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc.	 No royalty or other government charges are used in the Whittle Optimization, however all operating and capital costs including royalties and other government charges are included in the Life Of Mine Plan. 	

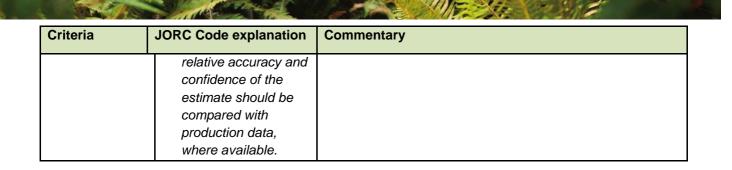
1


Criteria	JORC Code explanation	Commentary
	The allowances made for royalties payable, both Government and private.	
Revenue factors	 The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc . The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products. 	 The 2013 Whittle optimization was carried out including Measured and Indicated Mineral Resource categories and using: a gross FOB price at Port Latta expressed as US\$/dmt pellet and a nominated AUD = USD exchange rate The commodity pricing is sourced from CRU (Specialist Matter Experts in the market analysis for mining and metals)
<i>Market</i> <i>assessment</i>	 The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future. A customer and competitor analysis along with the identification of likely market windows for the product. 	 The mine and concentrator have operated continuously by Grange Resources since 2009 and before by Australian Bulk Minerals since 1997, and various parties since 1967. Product is presently sold as Concentrate and Pellet into the Asian and Australian markets. There are long term contracts in place and we also see a strong spot market. Prices are negotiated based on market indices.

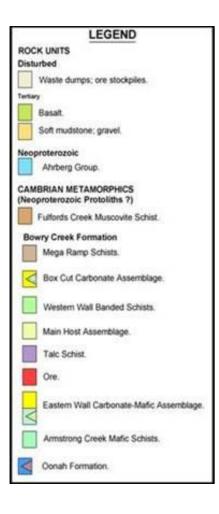
RESOURCES

1

Critoria	IOPC Code exploration	Commontory	
Criteria	JORC Code explanation	Commentary	
	operate.	 38 km to the north-east. The nearest major town by road is Burnie (population ~20,000), located on the north-west coast, about 100 km distant. Grange maintains a Community Liaison Committee which includes representatives of Government, Nongovernment and community groups which have shown an interest in the operation over the past decade. Grange also works with the Tasmanian Government in the Savage River Rehabilitation Project. This work has seen water quality in the Savage River improve from where it was significantly degraded by acid rock drainage in 1997 to where modified ecosystem targets are being met and pelagic aquatic species are re-populating the middle reaches of the river. On the back of this work, Grange has community support for the ongoing operation of the mine. 	
Other	 To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or 	 Asbestos group of minerals have been identified at Savage River. The asbesti-form materials are handled according to the fibrous materials policy at Grange, whereby risks from inspirable particles are monitored and controlled. A long term contract for supply of magnetite pellet to various customers exists. The Goldamere Act provides Tasmanian legislation to support the Savage River Operation Final approval for the SDTSF was received in 2014 and construction commenced in Q3 2014. 	



RESOURCES


3

C MARCHINE								
Criteria	JORC Code explanation	Commentary						
	 accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. Accuracy and confidence discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage. It is recognised that this may not be possible or appropriate in all circumstances. These statements of 	 Mod factors apply globally and metallurgical factors are reviewed annually. Some factors are applied locally, for example geotechnical parameters are applied locally. All modifying factors are reviewed periodically with reconciliations to evaluate accuracy and confidence of the estimates. Relative accuracy of the mod factors compares well with production data which is compared on a monthly and annual basis. 						

4

GRANGE

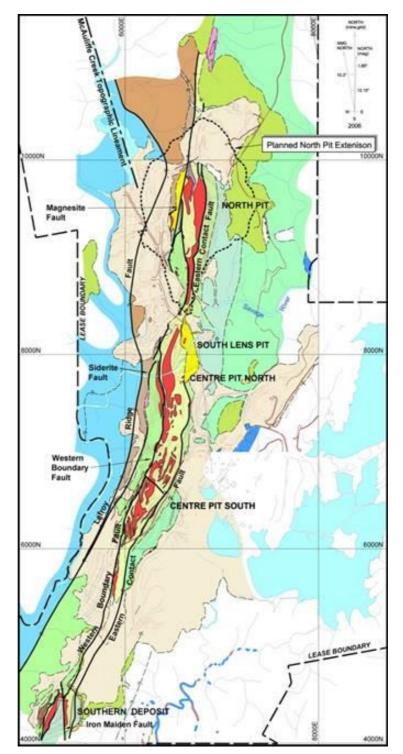
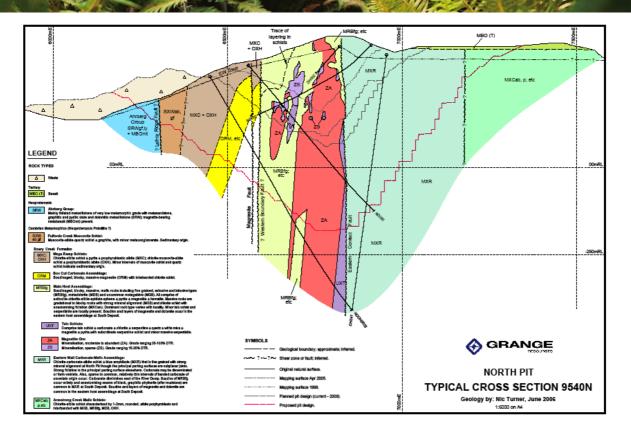
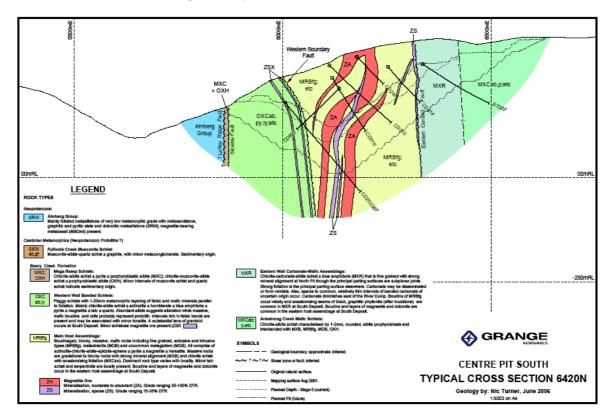




Figure 5 Regional Geology (2008)

Figure 6 Typical Cross Section for NP

Figure 7 Typical Cross Section of CPS

GRANGE

RESOURCES

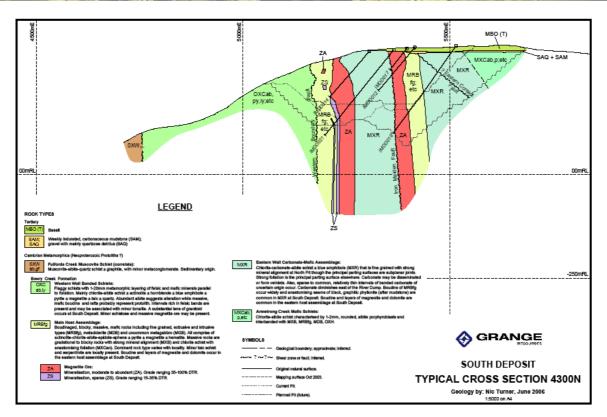


Figure 8 Typical Cross Section for SD

GRANGE

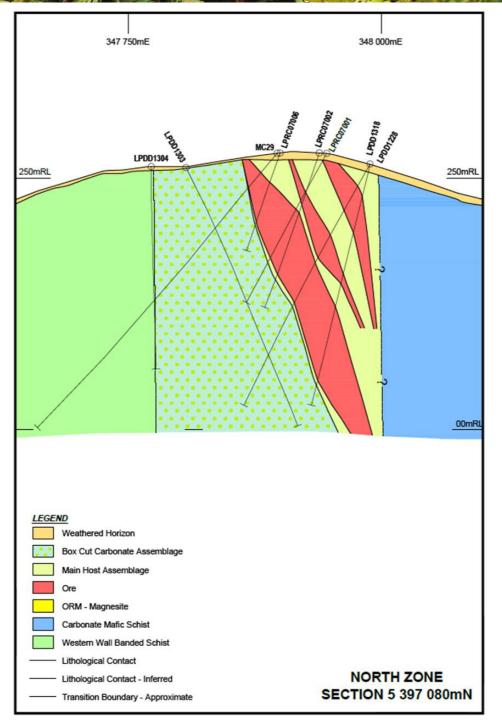


Figure 9 Typical Cross Section for Long Plains

GRA

Competent Person Statement

The information in this report that relates to Mineral Resources and Ore Reserves is based on information compiled by Mr Ben Maynard, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy, and is a full time employee of Grange Resources, and who holds shares in Grange Resources as part of the company incentive scheme.

Mr Maynard has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Maynard consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

-ENDS-

For further information, please contact: Michelle Li Chairman Grange Resources Limited + 61 3 6430 0222 Or visit <u>www.grangeresources.com.au</u>

DRILL HOLE DATA

Pursuant to the guidelines established in the JORC Code (2012 Edition), the following table represents the drill hole intercepts which support the Mineral Resource and Ore Reserve estimates for Savage River.

lp2013_resource	hole_id	х	У	Z	dip	azimuth	depth_from	depth_to	hole_depth
2	IMI28	348036	5396583	280	-47	259	24.37	83.33	166.72
1	IMI29	348011	5396883	263	-50	258	111.86	115.21	182.88
1	IMI29	348011	5396883	263	-50	258	141.57	151.24	182.88
1	IMI29	348011	5396883	263	-50	258	79.44	90.3	182.88
1	IMI29	348011	5396883	263	-50	258	16.45	36.32	182.88
2	IMI30	348311	5395383	230	-45	255	128.52	157.01	192.02
2	IMI30	348311	5395383	230	-45	255	98.38	110.76	192.02
2	IMI30 IMI35	348311	5395383 5397188	230	-45	255 257	58.16	83.09	192.02
2	IMI46	347976 347976	5397188	253 253	-85 -44	257	65.2 98.5	79.8 116.5	137.76 233.5
2	IMI46	347976	5397188	253	-44	257	30.92	46.44	233.5
1	LPC06001	347832.334	5396884.196	274.325	9.975	97.4236	52	52.07	136
1	LPC06001	347832.334	5396884.196	274.325	9.975	97.4236	85.71	97.25	136
1	LPC06001	347832.334	5396884.196	274.325	9.975	97.4236	115.44	122.03	136
1	LPC06002	347824.675	5396929.225	275.468	7.633	73.084	72	72.14	182.5
1	LPC06002	347824.675	5396929.225	275.468	7.633	73.084	140	142.34	182.5
1	LPC06002	347824.675	5396929.225	275.468	7.633	73.084	151	156	182.5
1	LPC06003	347878.762	5396988.981	278.285	5.374	99.484	18.14	30.97	115.5
1	LPC06003	347878.762	5396988.981	278.285	5.374	99.484	86	90	115.5
1	LPC06004	347789.948	5396998.136	274.601	-22.742	74.0721	184	185.35	222
1	LPC06005	347839.92	5397087.878	262.647	6.756	102.2647	28.99	29	157
1	LPC06005	347839.92	5397087.878	262.647	6.756	102.2647	70.46	71.21	157
1	LPC06006	347800.287	5397139.931	251.357	1.5	96.39	66.16	98.85	232
1	LPC06006	347800.287	5397139.931	251.357	1.5	96.39	121.23	141.85	232
1	LPC06006 LPC06007	347800.287 347794.805	5397139.931 5397184.637	251.357 238.578	1.5 10.962	96.39	166.9 85	169.18 103.99	232 226
1	LPC06007 LPC06007	347794.805	5397184.637	238.578	10.962	94.769 94.769	85	103.99	226
1	LPC06007	347794.805	5397184.637	238.578	10.962	94.769	130.62	146.2	226
1	LPC06008	347937.035	5396682.272	282.404	2.312	90.2152	4.1	27.98	56.5
1	LPC06008	347937.035	5396682.272	282.404	2.312	90.2152	43.27	56.5	56.5
1	LPC06009	347994.785	5396703.768	287.834	-2.586	71.4756	35.08	39.02	75.5
1	LPC06010	347968.41	5396582.489	277.129	6.828	86.3733	8	48.91	111
1	LPC06010	347968.41	5396582.489	277.129	6.828	86.3733	72	79	111
1	LPC06011	347955.274	5396486.27	269.432	7.154	93.0714	12.02	22.41	90.5
1	LPC06011	347955.274	5396486.27	269.432	7.154	93.0714	69.08	73.12	90.5
1	LPC06012	347996.683	5396384.121	264.179	11.897	91.1609	32	33	35
1	LPC06012	347996.683	5396384.121	264.179	11.897	91.1609	9.02	15.12	35
1	LPDD1103	348437.026	5394659.961	259.328	-54.29	89.64	71.04	76	293.2
1	LPDD1103	348437.026	5394659.961	259.328	-54.29	89.64	123.5	137.47	293.2
1	LPDD1103	348437.026	5394659.961	259.328	-54.29	89.64	184.3	186	293.2
1	LPDD1103	348437.026	5394659.961	259.328	-54.29	89.64	232	245.53	293.2
1	LPDD1204 LPDD1204	348295.353 348295.353	5394950.179 5394950.179	259.373 259.373	-59.57 -59.57	94.09 94.09	97.21 175.08	143.61 215	488.34 488.34
1	LPDD1204 LPDD1204	348295.353	5394950.179	259.373	-59.57	94.09	220.18	215	488.34
1	LPDD1204	348295.353	5394950.179	259.373	-59.57	94.09	297.32	351.95	488.34
1	LPDD1205	348194.817	5395259.99	240.681	-57.36	84.36	24.04	31.2	278.5
1	LPDD1205	348194.817	5395259.99	240.681	-57.36	84.36	66.55	120.66	278.5
1	LPDD1205	348194.817	5395259.99	240.681	-57.36	84.36	120.66	145	278.5
1	LPDD1205	348194.817	5395259.99	240.681	-57.36	84.36	166.9	179.58	278.5
1	LPDD1212	348080.499	5396392.012	267.101	-59.82	268	219.87	235.2	301.3
1	LPDD1212	348080.499	5396392.012	267.101	-59.82	268	123.98	132.1	301.3
1	LPDD1212	348080.499	5396392.012	267.101	-59.82	268	145.44	159.06	301.3
1	LPDD1212	348080.499	5396392.012	267.101	-59.82	268	265.33	268.97	301.3
1	LPDD1212	348080.499	5396392.012	267.101	-59.82	268	55.1	61.25	301.3
1	LPDD1215	348123.424	5396480.009	271.778	-56.96	273.29	204.6	252.2	301.4
1	LPDD1215	348123.424	5396480.009	271.778	-56.96	273.29	178.1	189.9	301.4
1	LPDD1218 LPDD1218	348088.841	5396580.143 5396580.143	282.278 282.278	-60 -60	270 270	101.5 73.95	232.12 81.2	288.1 288.1
1	LPDD1218 LPDD1220	348088.841 348083.671	5396580.143	282.278	-52.29	259.25	178.8	207.53	288.1
1	LPDD1220 LPDD1220	348083.671 348083.671	5396676.398	275.584	-52.29	259.25	61	165.85	236.6
1	LPDD1220 LPDD1223	347995.504	5396772.048	275.584	-32.29	239.23	142.3	201.2	300
1	LPDD1223	347995.504	5396772.048	290.53	-73.49	280.98	33.1	103.3	300
1	LPDD1228	347988.855	5397078.404	263.659	-60.76	274.49	111.9	156.51	270.2
1	LPDD1228	347988.855	5397078.404	263.659	-60.76	274.49	79.72	107	270.2
1	LPDD1228	347988.855	5397078.404	263.659	-60.76	274.49	24.48	52.38	270.2
1	LPDD1229	348007.081	5397181.123	254.693	-60	270	175.1	183.75	261.8
1	LPDD1229	348007.081	5397181.123	254.693	-60	270	74.42	83.87	261.8
1	LPDD1301	347991.708	5397130.271	262.24	-61	270	131	167	201.8
1	LPDD1301	347991.708	5397130.271	262.24	-61	270	37.02	48.89	201.8
1	LPDD1302	347992.196	5397130.286	262.136	-71	270	192.5	203.7	228.7
1	LPDD1302	347992.196	5397130.286	262.136	-71	270	72	78	228.7
1	LPDD1306	347795.267	5396931.67	276.328	-46.99	88.6	173.5	243	488.2
1	LPDD1306	347795.267	5396931.67	276.328	-46.99	88.6	278.2	300	488.2
1	LPDD1307	347845.553	5396939.252	283.403	-49.53	94.3	93	145	260.5

Long Plains Drill-hole Intersects as at 31 Dec 2013 1 of 2

lp2013_resource	hole_id	x	У	Z	dip	azimuth	depth_from	depth_to	hole_depth
1	LPDD1307	347845.553	5396939.252	283.403	-49.53	94.3	158.7	174	260.5
1	LPDD1307	347845.553	5396939.252	283.403	-49.53	94.3	203.9	209.3	260.5
1	LPDD1309	347948.173	5396780.587	290.548	-69.53	92.66916667	46.3	172.9	284.7
1	LPDD1309	347948.173	5396780.587	290.548	-69.53	92.66916667	242.9	257.1	284.7
1	LPDD1310	348081.84	5396676.7	270	-74.1	270	153.96	309.8	309.8
1	LPDD1311	348070.753	5396534.388	281.853	-70.91	261.1580556 261.1580556	162.6	241	271.6
1	LPDD1311 LPDD1312	348070.753 348090	5396534.388 5396160	281.853 262.527	-70.91 -65	201.1580550	120 101	129 153.6	271.6 222.2
1	LPDD1312 LPDD1313	348133.62	5396058.823	258.612	-03	270	101	206.4	222.2
1	LPDD1313	348133.62	5396058.823	258.612	-72	279.31	172	172	298.8
1	LPDD1313	348133.62	5396058.823	258.612	-72	279.31	128.3	166.5	298.8
1	LPDD1314	348159,542	5395961.302	251.144	-69.86	259	190	228.4	283.8
1	LPDD1314	348159.542	5395961.302	251.144	-69.86	259	150.8	183.1	283.8
1	LPDD1314	348159.542	5395961.302	251.144	-69.86	259	78	119.05	283.8
1	LPDD1315	348155.99	5395864.405	246.255	-76	270	175.3	204.7	312.7
1	LPDD1315	348155.99	5395864.405	246.255	-76	270	83	137.2	312.7
1	LPDD1315	348155.99	5395864.405	246.255	-76	270	5	43	312.7
1	LPDD1316	348158.501	5395867.783	246.338	-50	209	197.6	216.55	303.6
1	LPDD1316	348158.501	5395867.783	246.338	-50	209	140.8	171.3	303.6
1	LPDD1316	348158.501	5395867.783	246.338	-50	209	8.36	39.12	303.6
1	LPDD1318	347988.855	5397078.404	263.659	-75.84	274.5	143.7	220	245.9
1	LPDD1318	347988.855	5397078.404	263.659	-75.84	274.5	112.55	121	245.9
1	LPDD1318	347988.855	5397078.404	263.659	-75.84	274.5	34.16	69.07	245.9
1	LPDDH0707 LPDDH0707	347942.14 347942.14	5397183.33 5397183.33	262 262	-55.32 -55.32	268.42 268.42	52.3 37	89.6 46.72	156.2 156.2
1	LPDDH0707	347942.14	5397183.33	262	-55.32	268.42	5	23.9	156.2
1	LPDDH0707	347942.14	5397185.55	262	-55.52	208.42	111.04	154.2	130.2
1	LPDDH100	347993	5397029	260	-50	255	78	105	181
1	LPDDH100	347993	5397029	260	-50	255	32.8	46.7	181
1	LPDDH101	347945.548	5397030.359	274.873	-50	255	34.88	80	95
1	LPDDH101	347945.548	5397030.359	274.873	-50	255	26.1	28	95
1	LPDDH102	347896.183	5397018.656	275.786	-50	255	0	10	49
1	LPDDH103	348038	5397041	249	-50	255	180.6	199	199
1	LPDDH103	348038	5397041	249	-50	255	144.2	175.6	199
1	LPDDH103	348038	5397041	249	-50	255	81.7	96.5	199
1	LPRC07001	347942.22	5397124.86	267.41	-60.38	270.14	52	125	160
1	LPRC07001	347942.22	5397124.86	267.41	-60.38	270.14	7	36	160
1	LPRC07002 LPRC07002	347936.054	5397079.973 5397079.973	266.893 266.893	-70.82	270.21	54 34	119 45.64	154 154
1	LPRC07002 LPRC07003	347936.054 347891	5396985.04	280.04	-68.83	270.21 94.92	21	45.64	154
1	LPRC07003	347891	5396985.04	280.04	-68.83	94.92	123	120	184
1	LPRC07003	347891	5396985.04	280.04	-68.83	94.92	179.52	184	184
1	LPRC07004	347895.79	5396985.02	282.11	-56.02	92.25	2.05	41	160
1	LPRC07004	347895.79	5396985.02	282.11	-56.02	92.25	54	92	160
1	LPRC07004	347895.79	5396985.02	282.11	-56.02	92.25	102	121	160
1	LPRC07005	347908.03	5397133.71	263.89	-60.49	270.03	6	70	167
1	LPRC07006	347896.8	5397082.05	265.92	-70.38	270.36	23	66	93
1	LPRC1113	348042.602	5396380.131	271.166	-60.1	269.16	144	155	220
1	LPRC1113	348042.602	5396380.131	271.166	-60.1	269.16	29.27	33.3	220
1	LPRC1113	348042.602	5396380.131	271.166	-60.1	269.16	79.12	88.36	220
1	LPRC1113	348042.602	5396380.131	271.166	-60.1	269.16	200	203	220
1	LPRC1114	347973.878	5396383.201	266.921	-58.1	273.78	6	17	103
1	LPRC1114 LPRC1116	347973.878 348044.813	5396383.201 5396479.946	266.921 281.345	-58.1	273.78 269.44	45 47	58 114	103 200
1	LPRC1116 LPRC1116	348044.813 348044.813	5396479.946	281.345	-57.1	269.44 269.44	29	42	200
1	LPRC1110 LPRC1117	347972.774	5396480.018	274.563	-58.71	272.96	3.51	15	100
1	LPRC1121	348007.536	5396674.801	290.545	-55.7	266.77	74	111	196
1	LPRC1121	348007.536	5396674.801	290.545	-55.7	266.77	1.54	49	196
1	LPRC1122	347949.997	5396679.889	287.229	-60.26	269.48	0	16	106
1	LPRC1127	347929.009	5396879.567	292.593	-59.74	276.21	0	21	100
1	LPRC1127	347929.009	5396879.567	292.593	-59.74	276.21	65	73	100
1	LPRC1209	348156.736	5396270.128	258.904	-57.34	262.93	127.03	131	131
1	LPRC1210	348075.085	5396280.1	262.102	-59.31	271.34	135	170	200
1	LPRC1210	348075.085	5396280.1	262.102	-59.31	271.34	7	22	200
1	LPRC1210	348075.085	5396280.1	262.102	-59.31	271.34	42.31	57.48	200
1	LPRC1211	348013.93	5396278.708	258.77	-59.5	277.09	37	61	88
1	LPRC1224	347996.064	5396774.079	290.517	-58.22	272.08	95.55	141	200
1	LPRC1224 LPRC1225	347996.064 347943.252	5396774.079 5396780.434	290.517 290.429	-58.22 -61.25	272.08 276.21	24.8 25.44	76 66	200 100
1	LPRC1225 LPRC1308	347943.252	5396780.434	290.429	-01.25	92	39.33	61	166
1	LPRC1308 LPRC1308	347949.088	5396780.572	290.574	-48	92	127	136	166
1	LPRC1308	348085.212	5396674.553	275.746	-48	270	150.77	150	153
1	LPRC1317	348091.727	5396161.494	262.527	-65	90	17	28	149
1	LPRC1317	348091.727	5396161.494	262.527	-65	90	51	62	149
1	MC29	347888.057	5397120.877	263.792	-49.26	258.83	7.99	30.83	348
2	rtae1	347991	5397143	257	-45	255	90	145	195
		347991	5397143	257	-45	255	72.11	72.99	195
2	rtae1	347991	5557145	257	-43	255	72.11	72.55	155

Long Plains Drill-hole Intersects as at 31 Dec 2013 2 of 2

5D_1302	hals_id	x	7	I	dip	azimath	dapth from	dapth to	hale dept
1	IMDD001	4,422.5	5,477.3	310.1	-50.0	278.9	106.3	176.3	206.2
1	IMDD002	4,436.8	5,362.1	290.7	-50.0	283.4	\$7.5	104.7	175.3
1	IMDD002	4,436.8	5,362.1	290.7	-50.0	283.4	104.7	124.6	175.3
1	IMDD003	4,348.1	5,334.9	298.1	-50.0	271.6	98.2	142.1	167.2
1	IMDD004	4,342.2	5,410.9	307.2	-49.5	274.3	58.7	\$5.2	123.0
1	IMDD005	4,337.7	5,468.9	313.9	-50.0	273.7	130.5	134.5	134.5
1	IMDD006	4,242.2	5,387.3	307.9	-50.0	273.4	33.0	40.9	\$7.0
1	IMDD007	4,504.0	5,262.7	285.4	-50.0	94.3	74.2	\$5.7	151.5
1	IMDD007	4,504.0	5,262.7	285.4	-50.0	94.3	\$5.7	144.3	151.5
1	IMDD008	4,237.0	5,252.1	310.5	-50.0	299.9	56.6	95.5	95.5
1	IMDD009	4,490.8	5,427.0	307.2	-58.0	282.3	38.0	45.0	117.3
1	IMDD010	4,399.7	5,430.0	309.3	-50.0	273.7	38.6	116.9	124.5
1	IMDD011	4,398.0	5,321.4	295.6	-61.0	274.3	92.6	106.1	141.7
1	IMDD011	4,398.0	5,321.4	295.6	-61.0	274.3	122.0	127.7	141.7
1	IMDD012	4,290.8	5,414.7	307.4	-50.2	276.9	40.4	86.1	136.0
1	IMDD013	4,553.8	5,283.6	258.2	-49.0	93.4	\$1.8	\$2.3	136.0
1	IMDD014	4,302.5	5,305.0	298.4	-49.0	276.7	70.5	125.4	146.8
1	IMDD015	4,364.3	5,302.2	297.5	-56.1	96.3	93.0	158.0	188.1
1	IMDD016	4,257.6	5,281.3	304.4	-52.0	94.5	150.1	229.4	239.0
1	IMDD017	4,290.9	5,395.6	305.0	-51.5	273.4	13.0	59.5	65.5
1	IMDD019	4,285.2	5,514.7	311.2	-55.0	269.5	196.0	253.3	259.0
1	IMDD019	4,285.2	5,514.7	311.2	-55.0	269.5	253.3	259.0	259.0
1	IMDD020	4,499.1	5,306.9	271.5	-50.5	90.4	4.9	24.9	79.5
1	IMDD020	4,499.1	5,306.9	271.5	-50.5	90.4	24.9	61.8	79.5
1	IMDD021	4,295.3	5,363.9	301.3	-51.0	265.4	5.7	19.0	264.5
1	IMDD021	4,295.3	5,363.9	301.3	-51.0	265.4	154.2	209.7	264.5
1	IMDD021	4,295.3	5,363.9	301.3	-51.0	265.4	209.7	222.5	264.5
1	IMDD021	4,295.3	5,363.9	301.3	-51.0	265.4	234.0	240.5	264.5
1	IMDD022	4,385.4	5,505.7	311.4	-52.0	274.4	180.6	219.6	279.5
1	IMDD022	4,385.4	5,505.7	311.4	-52.0	274.4	219.6	223.3	279.5
1	IMDD023	4,394.3	5,372.9	303.6	-57.5	278.1	5.5	26.0	234.5
1	IMDD023	4,394.3	5,372.9	303.6	-57.5	278.1	154.2	179.2	234.5
1	IMDD023	4,394.3	5,372.9	303.6	-57.5	278.1	187.7	199.2	234.5
1	IMDD024	4,203.1	5,460.3	313.9	-49.0	274.3	106.1	139.8	149.3
1	IMDD025	4,199.9	5,240.6	283.5	-54.0	267.5	45.5	111.0	114.3
1	IMDD026	4,201.5	5,306.4	283.6	-48.0	270.6	124.0	147.1	237.1
1	IMDD026	4,201.5	5,306.4	283.6	-48.0	270.6	147.1	206.9	237.1
1	IMDD027	4,201.3	5,500.1	313.3	-56.7	270.2	143.6	200.8	218.7
1	IMDD027	4,201.3	5,500.1	313.3	-56.7	270.2	200.8	205.1	218.7
1	IMDD029	4,131.0	5,295.0	301.0	-51.1	268.4	155.2	308.8	345.5
1	IMDD030	4,132.9	5,249.6	294.9	-51.5	287.4	90.6	98.0	169.7
1	IMDD030	4,132.9	5,249.6	294.9	-51.5	287.4	121.9	129.0	169.7
1	IMDD030	4,132.9	5,249.6	294.9	-51.5	287.4	134.5	154.0	169.7
1	IMDD032	4,097.3	5,224.9	291.6	-46.0	268.5	\$4.1	90.2	155.5
1	IMDD032	4,097.3	5,224.9	291.6	-46.0	268.5	100.3	105.9	155.5
1	IMDD033	4,095.1	5,272.3	294.8	-59.5	89.2	213.9	354.0	390.4
1	IMDD034	4,052.8	5,250.5	295.6	-54.7	90.4	245.9	313.1	403.9
1	IMDD035	4,094.1	5,266.1	294.6	-51.0	270.0	133.6	151.2	223.2
1	IMDD035	4,094.1	5,266.1	294.6	-51.0	270.0	151.2	171.3	223.2
1	IMDD035	4,094.1	5,266.1	294.6	-51.0	270.0	188.0	196.0	223.2
1	IMDD036	4,102.7	5,325.8	293.6	-60.0	\$8.1	105.7	267.0	287.0
1	IMDD038	4,055.6	5,267.2	295.1	-52.0	270.4	158.5	182.3	244.0
1	IMDD038	4,055.6	5,267.2	295.1	-52.0	270.4	182.3	193.0	244.0
1	IMDD039	4,052.6	5,220.5	295.7	-51.0	268.4	98.5	104.5	148.8
1	IMDD039	4,052.6	5,220.5	295.7	-51.0	268.4	104.5	119.8	148.8
1	SDDD1201	4,181.1	5,547.6	291.2	-52.3	279.6	190.2	269.5	312.7
1	SDDD1201	4,181.1	5,547.6		-52.3	279.6	280.5	280.5	312.7
1	SDDD1202	4,054.7	5,301.0		-57.5	\$3.4	156.7	236.7	267.7
1	SDDD1203	4,129.3	5,486.1		-54.7	277.0	127.0	136.0	136.0
1	SDDD1204	4,141.3	5,513.1		-56.2	\$7.7	168.0	219.2	249.4
1	SDDD1205	4,300.0	5,096.9		-46.2	\$7.4	209.2	229.9	281.6
1	SDDD1205	4,300.0	5,096.9		-46.2	\$7.4	229.9	232.4	281.6
1	SDDD1206	4,250.0	5,102.0		-49.4	92.2	159.0	173.8	218.9
1	SDDD1206	4,250.0	5,102.0		-49.4	92.2	173.8	177.4	218.9
									- 17.7

South Deposit Drill-hole Intersects as at 31 Dec 2014 1 of 1

CP_1409	hole_id	x	у	z	dip	azimuth	depth_from	depth_to	max_depth
1	C88107	6423	7651	137	-90	0	9	18	18
1	C88108	6421	7631	141	-90	0	9.66	18	18
1	C88116	6395	7674	137	-90	0	0	18.8	21
1	C88118	6379	7439	152	-90	0	0	2.67	30
1	C88119	6380	7433	152	-90	0	0	6	30
1	C88113	6398	7319	152	-90	0	2.89	3	30
		1 1							
1	C88122	6406	7344	152	-90	0	0	30	30
1	C88123	6410	7365	152	-90	0	6	30	30
1	C88124	6408	7394	152	-90	0	0	12	30
1	C88124	6408	7394	152	-90	0	0	12	30
1	C88126	6425	7418	142	-90	0	0	8.28	12
1	C88127	6422	7444	140	-90	0	0	18	18
1	C88128	6420	7471	140	-90	0	0	9	18
1	C88128	6420	7471	140	-90	0	0	9	18
1	C88130	6452	7443	140	-90	0	0	3	3
1	C88131	6448	7413	140	-90	0	0	18	18
1	C88132	6452	7393	142	-90	0	0	18	18
1	C88133	6361	7585	150	-90	0	24	30	30
1	C88134	6362	7565	150	-90	0	0	30	30
1	C88135	6369	7536	150	-90	0	12	21	30
1	C88136	6378	7526	150	-90	0	0	30	30
1	C88137	6387	7519	150	-90	0	0	30	30
1	C88139	6391	7538	150	-90	0	0	33	33
1	C88135	6388	7563	150	-90	0	0	21	21
1	C88141	6380	7587	150	-90	0	1.93	33	33
1	C88142	6362	7605	150	-90	0	1.55	21	30
1	C88143	6380	7502	150	-90	0	21	39	39
1	C88145	6476	7639	130	-10	90	2.95	21	24
1	C88145	6476	7639	127	-10	90	2.95	21	24
1	C88145	6482	7529	127	-10	40	2.55	12	12
1	C88140	6444	7389	130	-90	40	0	6.08	15
1	C88148	6425	7305	142	-90	0	0	21	21
1	C88148	6440	7364	141	-90	0	0	17.37	24
	C88149	6437	7342	142	-90	0	0	3	3
	C88150	6435	7342	145	-90	0	0	24	24
	C88151	6414	7328	143	-90	0	0	18	18
	C88152	6418	7350	144	-90	0	0	21	21
	C88155	6422	7370	144	-90	0	0	21	21
					-90	0	0		
	C88155	6432	7410	144			0	18	18
	C88156	6376	7366	155	-90	0		24	24
	C88157	6375	7338	155	-90	0	0	27	27
	C88158	6362	7643	153	-90	0	0	27	27
	CD101	6524.2	7226.8	331.1	-45	267.8	0	30.8	182.9
	CD101	6524.2	7226.8	331.1	-45	267.8	0	30.8	182.9
	CD101	6524.2	7226.8	331.1	-45	267.8	30.8	67.4	182.9
	CD101	6524.2	7226.8	331.1	-45	267.8	67.4	117.3	182.9
	CD102	6514.2	7413.3	270.9	-45	268.5	3.7	15.2	167.6
	CD102	6514.2	7413.3	270.9	-45	268.5	3.7	15.2	167.6
	CD102	6514.2	7413.3	270.9	-45	268.5	22.6	41.8	167.6
1	CD102	6514.2	7413.3	270.9	-45	268.5	41.8	48.5	167.6

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 1 of 21 34a Alexander St, Burnie Tasmania 7320

CP_1409	hole_id	x	у	z	dip	azimuth	depth_from	depth_to	max_depth
1	CD102	6514.2	7413.3	270.9	-45	268.5	48.5	70.1	167.6
1	CD102	6514.2	7413.3	270.9	-45	268.5	75.3	97.8	167.6
	CD103	6488.9	7043.9	345.7	-45	269	24.7	45.4	174.7
	CD103	6488.9	7043.9	345.7	-45	269	24.7	45.4	174.7
	CD103	6488.9	7043.9	345.7	-45	269	45.4	115.8	174.7
	CD104	6552.3	6956.8	342.5	-45	275	31.1	36.3	347.6
	CD104	6552.3	6956.8	342.5	-45	275	31.1	36.3	347.6
	CD104	6552.3	6956.8	342.5	-45	275	80.8	88.1	347.6
	CD104	6552.3	6956.8	342.5	-45	275	163.7	204.8	347.6
	CD104	6552.3	6956.8	342.5	-45	275	231	272.5	347.6
	CD104	6552.3	6956.8	342.5	-45	275	272.5	291.49	347.6
	CD105	6560.2	7672.7	212.8	-45	268.14	76.8	111.9	204.22
	CD105	6560.2	7672.7	212.8	-45	268.14	76.8	111.9	204.22
	CD105	6560.2	7672.7	212.8	-45	268.14	116.4	139.9	204.22
	CD105	6560.2	7672.7	212.8	-45	268.14	139.9	153.6	204.22
	CD105	6560.2	7672.7	212.8	-45	268.14	158.8	174	204.22
	CD105	6560.2	7672.7	212.8	-45	268.14	174	185.9	204.22
	CD106	6440.1	7583.7	217.4	-45	91.5	7.9	12.32	158.8
	CD106	6440.1	7583.7	217.4	-45	91.5	7.9	12.32	158.8
	CD106	6440.1	7583.7	217.4	-45	91.5	34.1	39.8	158.8
	CD106	6440.1	7583.7	217.4	-45	91.5	112.5	118.3	158.8
	CD108	6600.4	7413.3	266.9	-45	270	9.8	17.96	285
		6600.4	7413.3	266.9	-45	270	9.8	17.96	285
	CD108	6600.4	7413.3	266.9	-45	270	28.3	34.1	285
	CD108	6600.4	7413.3	266.9	-45	270	109.4	120.7	285
	CD108	6600.4	7413.3	266.9	-45	270	135.6	161.8	285
	CD108	6600.4	7413.3	266.9	-45	270	161.8	173.4	285
		6600.4	7413.3	266.9	-45	270	101.0	173.4	285
	CD108	6600.4	7413.3	266.9	-45	270	173.4	105.5	285
		6600.4	7413.3	266.9	-45	270	200.15	211.5	285
	CD108	6600.4	7413.3	266.9	-45	270	222.8	245.7	285
	CD109	6407.5	6876.3	323	-61	270	0.72	16.09	142.6
1	CD109	6407.5	6876.3	323	-61	270	0.72	16.09	142.6
1	CD109	6407.5	6876.3	323	-61	270	46.3	62.2	142.6
1	CD105	6406.29	6790.64	321.75	-55	270	0.5	3.62	303.6
	CD110	6406.29	6790.64	321.75	-55	270	0	3.62	303.6
	CD110	6406.29	6790.64	321.75	-55	270	46	59.27	303.6
		6406.29	6790.64	321.75	-55	270	59.27	132.3	303.6
		6406.29	6790.64	321.75	-55	270	152.4	192.9	303.6
	CD110 CD110	6406.29	6790.64	321.75	-55	270	152.4	208.8	303.6
	CD110	6406.29	6790.64	321.75	-55	270	221.6		303.6
	CD110 CD111	6600.1	7587.1	226	-35	270	1.2	233.7	152.4
	CD111 CD111	6600.1	7587.1	220	-45	270	1.2	22.9	152.4
	CD112	6363	6690.4	306.7	-45	270	1.2	32.9	132.4
	CD112 CD112	6363	6690.4	306.7	-45	270	12.2	32.9	142.3
	CD112 CD113	6578.8	7043.9	332.2	-45	270	66.4	71.6	359.7
			7043.9		-45	270	66.4	71.6	
	CD113	6578.8		332.2	-45 -45				359.7
	CD113	6578.8	7043.9	332.2		270	180.1	194.5	359.7
	CD113	6578.8	7043.9	332.2	-45	270	194.5	208.2	359.7
1	CD113	6578.8	7043.9	332.2	-45	270	252.1	255.7	359.7

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 2 of 21

34a Alexander St, Burnie Tasmania 7320

CP 1409	hole_id	x	v	Z	dip	azimuth	depth_from	denth to	max_depth
_	CD113	6578.8	7043.9	332.2	-45	270	255.7	263.3	359.7
	CD113	6578.8	7043.9	332.2	-45	270	300.8	306.3	359.7
	CD113	6578.8	7043.9	332.2	-45	270	309.4	323.4	359.7
	CD113	6286.5	6461.8	315.5	-45	270	47.9	72.41	227.4
	CD114 CD114	6286.5	6461.8	315.5	-45	270	47.9	72.41	227.4
	CD114 CD114	6286.5	6461.8	315.5	-45	270	72.41	104.9	227.4
-	CD114 CD114	6286.5	6461.8	315.5	-45	270	139	187.37	227.4
	CD114 CD115	6298.1	6598	308.5	-45	270	48.5	187.57	128.6
-	CD115 CD116		6371.2	304.9	-55	270	29.3	37.2	
		6221.6							274.3
	CD116	6221.6	6371.2	304.9	-55 -55	270	29.3	37.2	274.3
-	CD116	6221.6	6371.2	304.9		270	37.2	88.1	274.3
-	CD116	6221.6	6371.2	304.9	-55	270	100	123.1	274.3
-	CD117	6614.2	7142.7	308.6	-55	270	125	128.9	335.3
	CD117	6614.2	7142.7	308.6	-55	270	125	128.9	335.3
	CD117	6614.2	7142.7	308.6	-55	270	152.7	167.9	335.3
	CD117	6614.2	7142.7	308.6	-55	270	264	274.3	335.3
-	CD117	6614.2	7142.7	308.6	-55	270	308.5	317.3	335.3
	CD118	6607.1	7227.4	309.8	-45	270	115.8	151.8	243.8
	CD118	6607.1	7227.4	309.8	-45	270	115.8	151.8	243.8
	CD119	6141.4	6186.8	272.8	-55	270	47.2	51.5	243.8
-	CD119	6141.4	6186.8	272.8	-55	270	47.2	51.5	243.8
	CD119	6141.4	6186.8	272.8	-55	270	59.7	63.62	243.8
1	CD119	6141.4	6186.8	272.8	-55	270	71.3	88.1	243.8
1	CD119	6141.4	6186.8	272.8	-55	270	98.5	118	243.8
	CD119	6141.4	6186.8	272.8	-55	270	118	133.2	243.8
1	CD119	6141.4	6186.8	272.8	-55	270	139.3	189.3	243.8
	CD119	6141.4	6186.8	272.8	-55	270	201.5	206.7	243.8
1	CD120	6187.4	6746.4	269	-45	90	6.7	15.5	221.1
	CD120	6187.4	6746.4	269	-45	90	6.7	15.5	221.1
1	CD120	6187.4	6746.4	269	-45	90	32.3	37.5	221.1
1	CD120	6187.4	6746.4	269	-45	90	46.6	47.24	221.1
1	CD120	6187.4	6746.4	269	-45	90	47.24	49.01	221.1
1	CD120	6187.4	6746.4	269	-45	90	49.01	58.8	221.1
1	CD120	6187.4	6746.4	269	-45	90	82.9	93.9	221.1
1	CD120	6187.4	6746.4	269	-45	90	108.5	144.8	221.1
1	CD121	6398.4	7326	314	-55	90	4.6	18.3	323.4
1	CD121	6398.4	7326	314	-55	90	4.6	18.3	323.4
1	CD121	6398.4	7326	314	-55	90	24.7	34.96	323.4
1	CD121	6398.4	7326	314	-55	90	39.6	101.8	323.4
1	CD121	6398.4	7326	314	-55	90	101.8	134.1	323.4
1	CD121	6398.4	7326	314	-55	90	134.1	167.14	323.4
1	CD121	6398.4	7326	314	-55	90	167.14	175.6	323.4
1	CD200101	6355.72	7640.28	99.71	-54.3	88.32	0	10.3	
	CD200101	6355.72	7640.28	99.71	-54.3	88.32	0	10.3	
	CD200101	6355.72	7640.28	99.71	-54.3	88.32	10.3	25.6	
	CD200101	6355.72	7640.28	99.71	-54.3	88.32	85.1	93.6	
	CD200101	6355.72	7640.28	99.71	-54.3	88.32	105.2	128.91	
	CD200101	6355.72	7640.28	99.71	-54.3	88.32	128.91	120.51	314.4
	CD200101	6355.72	7640.28	99.71	-54.3	88.32	120.91	155.3	314.4
	CD200101 CD200101	6355.72	7640.28	99.71	-54.3	88.32	155.3	155.5	314.4
1	CD200101	0555.72	7040.28	55.71	-54.5	00.32	100.3	107.7	514.4

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 3 of 21

-	hole_id		У	z	dip	azimuth	ueptii_iioiii	ueptii_to	max_depth
	CD200101	6355.72	7640.28	99.71	-54.3	88.32	174.73	199.6	314.4
	CD200101	6355.72	7640.28	99.71	-54.3	88.32	207	237.7	314.4
	CD200101	6355.72	7640.28	99.71	-54.3	88.32	278.7	281.1	314.4
L	CD200102	6346.028	7689.636	105.083	-49.2973	89.9572	0	16.2	304.5
	CD200102	6346.028	7689.636	105.083	-49.2973	89.9572	0	16.2	304.5
	CD200102	6346.028	7689.636	105.083	-49.2973	89.9572	64.79	102.5	304.5
L	CD200102	6346.028	7689.636	105.083	-49.2973	89.9572	102.5	127.42	304.5
	CD200102	6346.028	7689.636	105.083	-49.2973	89.9572	127.42	146.8	304.5
	CD200102	6346.028	7689.636	105.083	-49.2973	89.9572	150.3	167.7	304.5
	CD200102	6346.028	7689.636	105.083	-49.2973	89.9572	167.7	171.4	304.5
	CD200102	6346.028	7689.636	105.083	-49.2973	89.9572	191.5	205.52	304.5
1 C	CD200102	6346.028	7689.636	105.083	-49.2973	89.9572	205.52	226.01	304.5
	CD200102	6346.028	7689.636	105.083	-49.2973	89.9572	231	258	304.5
	CD200103	6335.986	7739.993	110.069	-50	93.223	2.6	19.63	326.8
1 C	CD200103	6335.986	7739.993	110.069	-50	93.223	2.6	19.63	326.8
	CD200103	6335.986	7739.993	110.069	-50	93.223	70.3	92.6	326.8
	CD200103	6335.986	7739.993	110.069	-50	93.223	92.6	114.4	326.8
L	CD200103	6335.986	7739.993	110.069	-50	93.223	120.6	139.7	326.8
	CD200103	6335.986	7739.993	110.069	-50	93.223	146	158.5	326.8
	CD200103	6335.986	7739.993	110.069	-50	93.223	181	215.5	326.8
	CD200103	6335.986	7739.993	110.069	-50	93.223	216.86	217.06	326.8
	CD200103	6335.986		110.069	-50	93.223	223.7	246.4	326.8
	CD200103	6335.986		110.069	-50	93.223	250.4	262.2	326.8
	CD200104	6353.068		111.301	-48.7267	88.0102	47.43	53	281.4
	CD200104	6353.068		111.301	-48.7267	88.0102	47.43	53	281.4
1 C	CD200104	6353.068	7840.115	111.301	-48.7267	88.0102	53	54.6	281.4
	CD200104	6353.068	7840.115	111.301	-48.7267	88.0102	54.6	72.7	281.4
	CD200104	6353.068	7840.115	111.301	-48.7267	88.0102	80.6	110.8	281.4
1 C	CD200104	6353.068	7840.115	111.301	-48.7267	88.0102	132.3	139.07	281.4
1 C	CD200104	6353.068	7840.115	111.301	-48.7267	88.0102	139.07	139.08	281.4
1 C	CD200104	6353.068	7840.115	111.301	-48.7267	88.0102	139.08	150.6	281.4
1 C	CD200105	6346.25	7890.37	111.97	-48.341	88.5902	0	12.4	292.7
	CD200105	6346.25	7890.37	111.97	-48.341	88.5902	0	12.4	292.7
	CD200105	6346.25	7890.37	111.97	-48.341	88.5902	59.3	76.4	292.7
	CD200105	6346.25	7890.37	111.97	-48.341	88.5902	80.5	82.5	292.7
	CD200105	6346.25	7890.37	111.97	-48.341	88.5902	87.59	101.6	292.7
	CD200105	6346.25	7890.37	111.97	-48.341	88.5902	113.2	157	292.7
	CD200105	6346.25	7890.37	111.97	-48.341	88.5902	157	166.42	292.7
	CD200105	6346.25	7890.37	111.97	-48.341	88.5902	166.42	176	292.7
	CD200105	6346.25	7890.37	111.97	-48.341	88.5902	193.63	225.2	292.7
L	CD200105	6346.25	7890.37	111.97	-48.341	88.5902	225.2	240.2	292.7
	CD200105	6346.25	7890.37	111.97	-48.341	88.5902	242.5	254.1	292.7
	CD200106	6353.966	7815.159	110.505	-48.15	96	51.31	52.4	270.1
	CD200106	6353.966	7815.159	110.505	-48.15	96	51.31	52.4	270.1
	CD200106	6353.966	7815.159	110.505	-48.15	96	53.7	85.18	270.1
	CD200106	6353.966	7815.159	110.505	-48.15	96	93.4	99.4	270.1
	CD200106	6353.966	7815.159	110.505	-48.15	96	134.12	136.65	270.1
	CD200106	6353.966		110.505	-48.15	96	187.6	212.3	270.1
	CD200100	6355.622		112.187	-47.84	89.15	0	3.87	275.7
	CD200107	6355.622		112.187	-47.84	89.15	0	3.87	275.7

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 4 of 21

CP_1409	hole_id	x	у	z	dip	azimuth	depth_from	depth_to	max_depth
1	CD200107	6355.622	7940.187	112.187	-47.84	89.15	58.9	61.6	275.7
1	CD200107	6355.622	7940.187	112.187	-47.84	89.15	116.8	124.9	275.7
	CD200107	6355.622	7940.187	112.187	-47.84	89.15	130.2	147	275.7
	CD200107	6355.622	7940.187	112.187	-47.84	89.15	156.6	179.9	275.7
1	CD200107	6355.622	7940.187	112.187	-47.84	89.15	179.9	208.6	275.7
	CD200107	6355.622	7940.187	112.187	-47.84	89.15	232.69	233.59	275.7
	CD200108	6361	7990	112	-50	90	197.91	198.4	250
1	CD200109	6353.652	7990.067	112.94	-48.148	89.4	2.43	2.45	363.2
	CD200109	6353.652	7990.067	112.94	-48.148	89.4	2.43	2.45	363.2
1	CD200109	6353.652	7990.067	112.94	-48.148	89.4	13	19.75	363.2
1	CD200109	6353.652	7990.067	112.94	-48.148	89.4	72.3	93.7	363.2
1	CD200109	6353.652	7990.067	112.94	-48.148	89.4	120.8	130.3	363.2
	CD200109	6353.652	7990.067	112.94	-48.148	89.4	153.5	171.81	363.2
	CD200109	6353.652	7990.067	112.94	-48.148	89.4	171.82	179.9	363.2
	CD200109	6353.652	7990.067	112.94	-48.148	89.4	202.4	232.6	363.2
	CD200109	6353.652	7990.067	112.94	-48.148	89.4	243.3	246.2	363.2
-	CD200109	6353.652	7990.067	112.94	-48.148	89.4	263.2	290.2	363.2
	CD200109	6353.652	7990.067	112.94	-48.148	89.4	305.7	321.1	363.2
	CD200201	5921.362	6000	224.235	-45.067	92.44	39.3	50.4	280.2
	CD200301	6197.142		249.274	-41.996	270.244	60.4	66.6	252
	CD200301	6197.142	6140.109	249.274	-41.996	270.244	60.4	66.6	252
	CD200301	6197.142	6140.109	249.274	-41.996	270.244	133.3	150.4	252
	CD200301	6197.142	6140.109	249.274	-41.996	270.244	158.2	161	252
	CD200301	6197.142	6140.109	249.274	-41.996	270.244	162	173.2	252
	CD200301	6197.142	6140.109	249.274	-41.996	270.244	178.7	199.75	252
	CD200302	5898.993	6189.624	206.474	-43.646	91.438	112.4	115.5	293
	CD200302	5898.993	6189.624	206.474	-43.646	91.438	112.4	115.5	293
	CD200302	5898.993	6189.624	206.474	-43.646	91.438	120.72	141.89	293
	CD200302	5898.993	6189.624	206.474	-43.646	91.438	141.89	142.4	293
	CD200302	5898.993	6189.624	206.474	-43.646	91.438	142.4	142.6	293
	CD200302	5898.993	6189.624	206.474	-43.646	91.438	150.7	185.25	293
	CD200302	5898.993	6189.624	206.474	-43.646	91.438	196.7	202.7	293
	CD200302	5898.993	6189.624	206.474	-43.646	91.438	202.7	213.2	293
-	CD200302	5898.993	6189.624	206.474	-43.646	91.438	231.7	247.7	293
1	CD200302	5898.993	6189.624	206.474	-43.646	91.438	247.7	259.6	293
-	CD200303	5899.32	6235.082		-44	90	120.4	139.9	297.4
	CD200303	5899.32	6235.082	201.274	-44	90	120.4	139.9	297.4
	CD200303	5899.32	6235.082	201.274	-44	90	156.81	165	297.4
	CD200303	5899.32	6235.082	201.274	-44	90	191.4	202.7	297.4
	CD200303	5899.32	6235.082	201.274	-44	90	202.7	214.2	297.4
1	CD200303	5899.32	6235.082	201.274	-44	90	221.5	250.1	297.4
	CD200303	5899.32	6235.082	201.274	-44	90	250.1	266.8	297.4
1	CD200304	6015.901	6274.009	158.079	-55.363	91.423	1.17	16.5	190
	CD200304	6015.901	6274.009	158.079	-55.363	91.423	1.17	16.5	190
-	CD200304	6015.901	6274.009	158.079	-55.363	91.423	32.27	32.5	190
	CD200304	6015.901	6274.009	158.079	-55.363	91.423	42.26	45.7	190
	CD200304	6015.901	6274.009	158.079	-55.363	91.423	76.75	88.74	190
	CD200304	6015.901	6274.009	158.079	-55.363	91.423	88.74	94.22	190
	CD200304	6015.901	6274.009	158.079	-55.363	91.423	108.4	131.3	190
	CD200304	6015.901	6274.009		-55.363	91.423	131.3	144.4	190
4	00200000	3013.301	52, 1.005	130.075	55.505	51.425		£ 24	100

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 5 of 21

CP 1409	hole_id	x	у	z	dip	azimuth	depth_from	depth_to	max depth
1	CD200304	6015.901	<i>.</i> 6274.009	158.079	-55.363	91.423		158.2	 190
	CD200305	6029.614	6322.97	156.728	-50.118	89.1714	2.25	3.3	196.1
	CD200305	6029.614	6322.97	156.728	-50.118	89.1714	2.25	3.3	196.1
	CD200305	6029.614	6322.97	156.728	-50.118	89.1714	56.4	72.9	196.1
	CD200305	6029.614	6322.97	156.728	-50.118	89.1714	80.8	102.8	196.1
	CD200305	6029.614	6322.97	156.728	-50.118	89.1714	107.61	143.8	196.1
	CD200305	6029.614	6322.97	156.728	-50.118	89.1714	149.9	164.6	196.1
	CD200306	6048.328	6371.623	156.72	-51	90	15.4	23.3	199.7
	CD200306	6048.328	6371.623	156.72	-51	90	15.4	23.3	199.7
	CD200306	6048.328	6371.623	156.72	-51	90	51.03	74.2	199.7
	CD200306	6048.328	6371.623	156.72	-51	90	104	112.5	199.7
1		6048.328	6371.623	156.72	-51	90	120.32	140.4	199.7
1		6048.328	6371.623	156.72	-51	90	153.9	164.7	199.7
	CD200306	6048.328	6371.623	156.72	-51	90	167.3	174.8	199.7
	CD200307	6006.701	6419.85	180.623	-51	90	140	160.5	280
	CD200307	6006.701	6419.85	180.623	-51	90	140	160.5	280
	CD200307	6006.701	6419.85	180.623	-51	90	190.84	202.21	280
	CD200308	6012.16	6461.93	177.28	-52.68	92.46	155.9	166.3	286.9
	CD200308	6012.16	6461.93	177.28	-52.68	92.46	155.9	166.3	286.9
	CD200308	6012.16	6461.93	177.28	-52.68	92.46	174.5	199.7	286.9
	CD200308	6012.16	6461.93	177.28	-52.68	92.46	214.5	219	286.9
	CD200308	6012.16	6461.93	177.28	-52.68	92.46	219	234.6	286.9
	CD200308	6012.16	6461.93	177.28	-52.68	92.46	234.6	246.3	286.9
	CD200309	6096.768	6090.8	237.71	-38.67	269.25	55.8	57.01	200.5
	CD200309	6096.768	6090.8	237.71	-38.67	269.25	55.8	57.01	202.1
	CD200309	6096.768	6090.8	237.71	-38.67	269.25	67.5	72.4	202.1
	CD200309	6096.768	6090.8	237.71	-38.67	269.25	128.6	133.7	202.1
1		6312.773	6321.347	265.008	-45	270	56.87	75.4	91
1		6312.773	6321.347	265.008	-45	270	56.87	75.4	91
	CD200401	6131.02	6641.267	155.52	-50.5	90	59.8	61.9	216
	CD200401	6131.02	6641.267	155.52	-50.5	90	59.8	61.9	216
	CD200401	6131.02	6641.267	155.52	-50.5	90	95.8	100.3	216
	CD200401	6131.02	6641.267	155.52	-50.5	90	100.3	120	216
	CD200401	6131.02	6641.267	155.52	-50.5	90	122.4	152.5	216
	CD200402	6078.88		165.83	-50	90	96	102.7	280.5
	CD200402	6078.88	6553.31	165.83	-50	90	96	102.7	280.5
	CD200402	6078.88	6553.31	165.83	-50	90	116.6	136.7	280.5
	CD200402	6078.88	6553.31	165.83	-50	90	141.7	166.5	280.5
	CD200402	6078.88	6553.31	165.83	-50	90	166.5	186.8	280.5
	CD200403	6156.56	6705.33	149.06	-50	102	53.53	64.59	249.9
	CD200403	6156.56	6705.33	149.06	-50	102	53.53	64.59	249.9
	CD200403	6156.56	6705.33	149.06	-50	102	89.4	118.8	249.9
	CD200403	6156.56	6705.33	149.06	-50	102	118.8	120.8	249.9
	CD200403	6156.56	6705.33	149.06	-50	102	157.2	178.5	249.9
	CD200403	6156.56	6705.33	149.06	-50	102	210.5	218.2	249.9
	CD201	6407.2	6876.3	322.9	-55	270	0.44	13.13	46.9
	CD201	6407.2	6876.3	322.9	-55	270	0.44	13.13	46.9
	CD201	6319.4	6868.1	299.9	-55	270	0.44	20.86	40.5
	CD202	6319.4	6868.1	299.9	-55	270	0	20.86	47.2
	CD202	6255.7	6868.1	235.5	-55	90	1.38	39.19	61
1	50205	0255.7	0000.1	207.1	-00	30	1.30	55.15	01

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 6 of 21

CP 1409	hole_id	x	v	z	dip	azimuth	depth from	depth_to	max depth
	CD203	A 6255.7	y 6868.1	287.1	-55	90	1.38	39.19	61
	CD203 CD20303	6425	7674	137	-90	<u> </u>	1.38	17.5	21
-	CD20303	6425	7674	137	-90	0	14.79	17.5	21
	CD20303	6255.1	6868.1	287.1	-90	270	13.4	63.4	63.4
	CD204 CD205		6952.5	321.7		90	17.99		48.2
	CD205	6394.4		321.7	-45 -45	90		31.4	
	CD205 CD206	6394.4 6363.9	6952.5 6952.5	309.6	-45	90	17.99 0	31.4 7.11	48.2 57.3
-	CD206		6952.5	309.6	-45	90	0	7.11	
	CD206	6363.9 6363.9	6952.5	309.6	-45	90	19.25	37.8	57.3 57.3
	CD206			309.6	-45	90	52.1	52.8	
		6363.9	6952.5						57.3
	CD206	6363.9	6952.5	309.6	-45	90	52.8	53.57	57.3
	CD207	6340	6954	301.1	-45	90	0	15.82	59.4
	CD207	6340	6954	301.1	-45	90	0	15.82	59.4
-	CD207	6340	6954	301.1	-45	90	20.04	39.79	59.4
-	CD208	6544.1	7043.9	343.3	-45	270	16.2	19.5	85.6
-	CD209	6438.9	7045.1	336	-45	270	0	39.6	45.7
	CD209	6438.9	7045.1	336	-45	270	0	39.6	45.7
-	CD210	6400.5	7044.2	329.8	-45	270	0	11.9	47.5
-	CD210	6400.5	7044.2	329.8	-45	270	0	11.9	47.5
	CD211	6496.2	7134.8	346.2	-45	270	0.61	11.6	57.9
	CD211	6496.2	7134.8	346.2	-45	270	0.61	11.6	57.9
1	CD211	6496.2	7134.8	346.2	-45	270	16.2	21.6	57.9
1	CD212	6456.6	7135.4	336.2	-45	270	0	33.8	33.8
1	CD213	6434.9	7135.3	330.9	-45	270	0	20.22	46.9
1	CD213	6434.9	7135.3	330.9	-45	270	0	20.22	46.9
1	CD213	6434.9	7135.3	330.9	-45	270	20.22	36.9	46.9
1	CD215	6324	6788	301.3	-45	90	39.3	46	46
1	CD216	6489.5	7618.8	240.5	-60	270	12.8	25	76.2
1	CD216	6489.5	7618.8	240.5	-60	270	12.8	25	76.2
1	CD217	6294.7	6787.3	296.8	-45	90	39.3	51.5	52.1
1	CD218	6266.4	6787.9	288.8	-45	90	14.3	20.4	60.4
1	CD218	6266.4	6787.9	288.8	-45	90	14.3	20.4	60.4
1	CD219	6452	7323	323.6	-45	270	10.1	41.1	64.9
1	CD219	6452	7323	323.6	-45	270	10.1	41.1	64.9
1	CD219	6452	7323	323.6	-45	270	49.4	57	64.9
1	CD220	6232.6	6786.1	281.2	-45	90	31.7	39.9	51.8
1	CD220	6232.6	6786.1	281.2	-45	90	31.7	39.9	51.8
1	CD221	6496	7321	318.6	-45	270	19.2	50.9	62.5
-	CD221	6496	7321	318.6	-45	270	19.2	50.9	62.5
-	CD222	6181	6789	264.2	-45	90	17.1	28	54.9
-	CD222	6181	6789	264.2	-45	90	17.1	28	54.9
	CD223	6552	7228.6	324.9	-45	270	1.8	42.7	42.7
	CD224	6472	7227	336.4	-45	270	1.15	12.5	57.6
	CD224	6472	7227	336.4	-45	270	1.15	12.5	57.6
	CD226	6415.7	7410	305.5	-55	270	13.7	33.5	82.3
	CD226	6415.7	7410	305.5	-55	270	13.7	33.5	82.3
-	CD220 CD227	6279.5	6690	287.5	-55	270	0	25.3	106.7
-	CD227 CD227	6279.5	6690	287.5	-55	270	0	25.3	106.7
	CD227 CD227	6279.5	6690	287.5	-55	270	25.3	49.92	106.7
	CD227 CD228	6448.3	7419	311.2	-55	270	25.5	49.92	70.1
1	CD220	0448.3	7419	511.2	-55	270	0	10.1	/0.1

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 7 of 21

CD 1400	hala id			-	al in	animeuth	depth_from	danth ta	max_depth
CP_1409	hole_id	X	y 7440	Z	dip	azimuth			
	CD228	6448.3	7419	311.2	-55	270	0	10.1	70.1
	CD228	6448.3	7419	311.2	-55	270	18.6	38.1	70.1
-	CD229	6444.4	7272.5	329.8	-45	270	0	36.92	97.5
	CD229	6444.4	7272.5	329.8	-45	270	0	36.92	97.5
-	CD229	6444.4	7272.5	329.8	-45	270	37.4	42.37	97.5
	CD229	6444.4	7272.5	329.8	-45	270	53.9	61	97.5
	CD229	6444.4	7272.5	329.8	-45	270	79.5	91.38	97.5
	CD230	6435.2	7226.8	331.9	-45	270	49.7	54.6	82.9
	CD231	6504.7	7273.1	324.9	-45	270	16.8	34.7	92.7
	CD231	6504.7	7273.1	324.9	-45	270	16.8	34.7	92.7
	CD231	6504.7	7273.1	324.9	-45	270	34.7	72.46	92.7
	CD232	6241.4	6605.3	291.9	-55	270	0	6.43	70.4
	CD233	6537	7272.8	316.9	-45	270	23.8	80.2	80.2
	CD234	6432.5	7364	315.3	-45	270	4	29.3	61.9
	CD234	6432.5	7364	315.3	-45	270	4	29.3	61.9
	CD234	6432.5	7364	315.3	-45	270	32.6	44.2	61.9
	CD235	6285.6	6915.6	287	-45	90	0	15.1	91.7
	CD235	6285.6	6915.6	287	-45	90	0	15.1	91.7
	CD235	6285.6	6915.6	287	-45	90	17.31	33.7	91.7
1	CD235	6285.6	6915.6	287	-45	90	45.26	77.89	91.7
1	CD235	6285.6	6915.6	287	-45	90	77.89	78	91.7
1	CD236	6358.1	6830.3	303	-45	90	0	13.4	91.6
1	CD236	6358.1	6830.3	303	-45	90	0	13.4	91.6
1	CD237	6479.7	7089	342.9	-45	90	10.1	26.2	91.4
1	CD237	6479.7	7089	342.9	-45	90	10.1	26.2	91.4
1	CD237	6479.7	7089	342.9	-45	90	36.43	36.94	91.4
1	CD238	6348.1	6915.6	309.8	-45	90	0	4.45	99.4
1	CD238	6348.1	6915.6	309.8	-45	90	0	4.45	99.4
1	CD238	6348.1	6915.6	309.8	-45	90	7.18	51.24	99.4
1	CD238	6348.1	6915.6	309.8	-45	90	62.59	64.99	99.4
1	CD239	6281.3	6553.5	310.19	-55	270	17.4	39.3	79.25
1	CD239	6281.3	6553.5	310.19	-55	270	17.4	39.3	79.25
1	CD240	6192.3	6544.97	277.03	-55	270	16.9	59.7	59.7
1	CD241	6296	6640	296.8	-45	90	11.6	22.85	56.1
1	CD241	6296	6640	296.8	-45	90	11.6	22.85	56.1
1	CD242	6178.3	6420.6	290.6	-45	90	0	1.2	91.4
1	CD242	6178.3	6420.6	290.6	-45	90	0	1.2	91.4
1	CD242	6178.3	6420.6	290.6	-45	90	29.6	40.77	91.4
1	CD243	6242.3	6553.2	298.4	-55	270	0	15.2	103.6
1	CD243	6242.3	6553.2	298.4	-55	270	0	15.2	103.6
1	CD244	6203	6509	281.5	-45	90	0	4.09	82.6
1	CD244	6203	6509	281.5	-45	90	0	4.09	82.6
1	CD245	6419.7	7090	327.8	-45	90	3.05	14.9	91.7
1	CD245	6419.7	7090	327.8	-45	90	3.05	14.9	91.7
	CD245	6419.7	7090	327.8	-45	90	14.9	27.4	91.7
1	CD246	6495.3	7354.5	301.4	-45	270	2.28	15.2	91.7
	CD246	6495.3	7354.5	301.4	-45	270	2.28	15.2	91.7
1	CD246	6495.3	7354.5	301.4	-45	270	15.2	49.4	91.7
	CD246	6495.3	7354.5	301.4	-45	270	53.9	76.2	91.7
	CD247	6497.1	7357	301.2	-55	90	0	22.9	91.4

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 8 of 21

CP 1409	hole_id	x	y	z	dip	azimuth	depth_from	depth to	max_depth
1	CD247	6497.1	<i>.</i> 7357	301.2	-55	90	0	22.9	91.4
	CD247	6497.1	7357	301.2	-55	90	37.8	50.9	91.4
	CD247	6497.1	7357	301.2	-55	90	58.8	86.3	91.4
	CD248	6379.8	7001	320.3	-45	90	0	10.7	91.4
	CD248	6379.8	7001	320.3	-45	90	0	10.7	91.4
	CD248	6379.8	7001	320.3	-45	90	21.3	34.4	91.4
	CD248	6379.8	7001	320.3	-45	90	46.6	55.2	91.4
-	CD249	6315.5	7002	290.3	-45	90	0	12.2	91.4
	CD249	6315.5	7002	290.3	-45	90	0	12.2	91.4
	CD249	6315.5	7002	290.3	-45	90	12.2	24.4	91.4
	CD249	6315.5	7002	290.3	-45	90	24.4	57.9	91.4
	CD249	6315.5	7002	290.3	-45	90	63.4	71.6	91.4
	CD250	6354.8	7090	311.1	-45	90	23.32	60	80.5
	CD250	6354.8	7090	311.1	-45	90	23.32	60	80.5
	CD251	6299	7090.9	296.1	-45	90	7.3	54.3	91.4
	CD252	6452.3	7184.1	336.6	-45	270	29.6	63.4	97.5
	CD254	6552	7180	328.8	-43	270	6.4	46.6	79.2
	CD254	6552	7180	328.8	-43	270	6.4	46.6	79.2
	CD302	6006.1	6324.3	231.6	-45	90	9.8	22.1	243.8
	CD302	6006.1	6324.3	231.6	-45	90	9.8	22.1	243.8
	CD302	6006.1	6324.3	231.6	-45	90	35.1	44.2	243.8
	CD302	6006.1	6324.3	231.6	-45	90	49.2	54.9	243.8
	CD302	6006.1	6324.3	231.6	-45	90	62.3	81.7	243.8
	CD302	6006.1	6324.3	231.6	-45	90	104.5	112.9	243.8
	CD302	6006.1	6324.3	231.6	-45	90	104.5	136.6	243.8
	CD302	6006.1	6324.3	231.0	-45	90	124.8	130.0	243.8
	CD302	6006.1	6324.3	231.0	-45	90	150.0	140.4	243.8
	CD302	6006.1	6324.3	231.0	-45	90	183.5	188.6	243.8
	CD302	6006.1	6324.3	231.0	-45	90	183.3	208.5	243.8
	CD302	6113	6416	269.6	-45	90	30.6	46	243.8
	CD303	6113	6416	269.6	-45	90	30.6	40	201.2
	CD303	6113	6416	269.6	-45	90	92	99.5	201.2
	CD303	6113	6416	269.6	-45	90	92	105.25	201.2
	CD303	6113	6416	269.6	-45	90	105.25	103.23	201.2
	CD305	6128	6599	209.0	-43	90	8.2		
	CD305		6599	247.8	-47	90 90	8.2	41.5	204.2
	CD305	6128 6128	6599	247.8	-47	90 90	85.8	91.1	204.2
	CD305	6128	6599	247.8	-47	<u> </u>	97.5	125.3	204.2
	CD305					<u> </u>	97.5		
		6128	6599	247.8	-47 -47	<u> </u>		148	
	CD305	6128	6599	247.8			148	172.7	204.2
	CD305	6128	6599	247.8	-47	90	172.7	201.9	204.2
	CD307	6136.8	6681.8	238.1	-45	90	11.3	22.1	243.8
	CD307	6136.8	6681.8	238.1	-45	90	11.3	22.1	243.8
	CD307	6136.8	6681.8	238.1	-45	90	33.5	61.7	243.8
	CD307	6136.8	6681.8	238.1	-45	90	80.9	96.5	243.8
	CD307	6136.8	6681.8	238.1	-45	90	106.4	134	243.8
	CD307	6136.8	6681.8	238.1	-45	90	137	145.7	243.8
	CD307	6136.8	6681.8	238.1	-45	90	145.7	163.05	243.8
	CD307	6136.8	6681.8	238.1	-45	90	163.05	173.4	243.8
1	CD308	6220	6830	274.7	-48	90	13.09	15.83	286.82

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 9 of 21

1 CD308 6220 6830 274.7 48 90 13.09 15.33 266.82 1 CD308 6220 6830 274.7 48 90 47.5 7.8 286.82 1 CD308 6220 6830 274.7 48 90 84.9 111.6 286.82 1 CD308 6220 6830 274.7 48 90 113.06 123.3 286.82 1 CD308 6220 6830 274.7 48 90 61.1 37.8 240.2 1 CD309 6224 6900 273.3 44 90 61.1 37.8 240.2 1 CD309 6224 6900 273.3 44 90 174.35 191.9 240.2 1 CD309 6224 6900 273.3 44 90 174.35 191.9 240.2 1 CD409 6224 6900 273.3 44 <td< th=""><th>CP 1409</th><th>hole_id</th><th>x</th><th>v</th><th>z</th><th>dip</th><th>azimuth</th><th>depth_from</th><th>depth_to</th><th>max_depth</th></td<>	CP 1409	hole_id	x	v	z	dip	azimuth	depth_from	depth_to	max_depth
1 C0308 6220 6830 274.7 -48 90 275.3 475. 286.82 1 C0308 6220 6830 274.7 -48 90 84.9 111.6 286.82 1 C0308 6220 6830 274.7 -48 90 102.5 195.2 286.82 1 C0308 6220 6830 274.7 -48 90 66.1 37.8 240.2 1 C0309 6224 6900 273.3 -45 90 6.1 37.8 240.2 1 C0309 6224 6900 273.3 -45 90 44.2 81.07 240.2 1 C0309 6224 6900 273.3 -45 90 174.35 240.2 1 C0309 6224 6900 273.3 -45 90 174.77 240.2 1 C0309 6224 6900 273.3 -45 90 174.53	_	_				-			. =	
1 CD308 6220 6830 274.7 -48 90 47.5 78 286.82 1 C0308 6220 6830 274.7 -48 90 113.0 126.25 195.2 286.82 1 CD308 6220 6830 274.7 -48 90 116.25 195.2 286.82 1 CD309 6224 6900 273.3 -45 90 6.1 37.8 240.2 1 CD309 6224 6900 273.3 -45 90 44.2 81.07 240.2 1 CD309 6224 6900 273.3 -45 90 174.35 191.29 240.2 1 CD309 6224 6900 273.3 -45 90 174.35 191.29 240.2 1 CD309 6224 6900 273.3 -45 90 174.35 191.39 240.2 1 CD401 6526 7002 301.3 </td <td></td>										
1 CD308 6220 6830 274.7 -48 90 84.9 111.6 286.82 1 CD308 6220 6830 274.7 -48 90 113.06 123.3 286.82 1 CD308 6220 6830 274.7 -48 90 162.5 195.2 286.82 1 CD309 6224 6900 273.3 -45 90 6.1 37.8 240.2 1 CD309 6224 6900 273.3 -45 90 84.9 111.75 174.07 240.2 1 CD309 6224 6900 273.3 -45 90 171.75 174.07 240.2 1 CD309 6224 6900 273.3 -45 90 171.75 174.07 240.2 1 CD309 6224 6900 273.3 -45 90 171.75 174.07 240.2 1 CD401 6526 7002 301										
1 CD308 6220 6830 274.7 -48 90 113.06 123.3 286.82 1 CD308 6220 6830 274.7 -48 90 162.5 195.2 286.82 1 CD309 6224 6900 273.3 -45 90 6.1 37.8 240.2 1 CD309 6224 6900 273.3 -45 90 83.91 87.78 240.2 1 CD309 6224 6900 273.3 -45 90 91.71.75 174.07 240.2 1 CD309 6224 6900 273.3 -45 90 171.75 174.07 240.2 1 CD309 6224 6900 273.3 -45 90 12.95 171.67 1 CD401 6526 7002 301.3 -60 90 6.82 7.33 119.35 1 CD403 6438 6990 265 -45 90										
1 CD308 6220 6830 274.7 -48 90 162.5 195.2 286.82 1 CD309 6220 6830 274.7 -48 90 6.1 37.8 240.2 1 CD309 6224 6900 273.3 -45 90 6.1 37.8 240.2 1 CD309 6224 6900 273.3 -45 90 83.91 87.78 240.2 1 CD309 6224 6900 273.3 -45 90 171.75 174.07 240.2 1 CD309 6224 6900 273.3 -45 90 171.75 174.07 240.2 1 CD309 6224 6900 273.3 -45 90 171.67 174.07 240.2 1 CD401 6526 7002 301.3 -60 90 6.82 7.33 119.35 1 CD403 6438 6990 265 -45										
1 CD308 6220 6830 274.7 -48 90 206.6 222.2 286.82 1 CD309 6224 6900 273.3 -45 90 6.1 37.8 240.2 1 CD309 6224 6900 273.3 -45 90 44.2 81.07 240.2 1 CD309 6224 6900 273.3 -45 90 92.2 122.7 240.2 1 CD309 6224 6900 273.3 -45 90 171.75 174.07 240.2 1 CD309 6224 6900 273.3 -45 90 20.56 240.2 1 CD401 6526 7002 301.3 -60 90 6.82 7.33 119.35 1 CD403 6438 6990 265 -45 90 0 12.95 171.67 1 CD403 6438 6990 265 -45 90 10										
1 CD309 6224 6900 273.3 -45 90 6.1 37.8 240.2 1 CD309 6224 6900 273.3 -45 90 61.1 37.8 240.2 1 CD309 6224 6900 273.3 -45 90 83.91 87.78 240.2 1 CD309 6224 6900 273.3 -45 90 177.5 174.07 240.2 1 CD309 6224 6900 273.3 -45 90 177.35 191.07 240.2 1 CD309 6224 6900 273.3 -45 90 08.82 7.33 119.35 1 CD401 6526 7002 301.3 -60 90 6.82 7.33 119.35 1 CD403 6438 6990 265 -45 90 0 12.25 171.67 1 CD403 6438 6990 265 -45 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
1 CD309 6224 6900 273.3 -45 90 44.2 81.07 240.2 1 CD309 6224 6900 273.3 -45 90 83.91 87.78 240.2 1 CD309 6224 6900 273.3 -45 90 171.75 174.07 240.2 1 CD309 6224 6900 273.3 -45 90 171.75 174.07 240.2 1 CD309 6224 6900 273.3 -45 90 171.75 192 240.2 1 CD401 6526 7002 301.3 -60 90 6.82 7.33 119.35 1 CD401 6526 7002 301.3 -60 90 0 12.95 171.67 1 CD403 6438 6990 265 -45 90 0 12.95 171.67 1 CD403 6438 6990 265 -45 90 83.05 84.4 171.67 1 CD403 6302 7318										
1 CD309 6224 6900 273.3 -45 90 84.2 81.07 240.2 1 CD309 6224 6900 273.3 -45 90 83.91 87.78 240.2 1 CD309 6224 6900 273.3 -45 90 171.75 174.07 240.2 1 CD309 6224 6900 273.3 -45 90 174.35 191.29 240.2 1 CD309 6224 6900 273.3 -45 90 174.35 191.29 240.2 1 CD401 6526 7002 301.3 -60 90 6.82 7.33 119.35 1 CD403 6438 6990 265 -45 90 0 12.95 171.67 1 CD403 6438 6990 265 -45 90 83.05 88.4 171.67 1 CD405 6302 7318 241 -55						-				
1 C0309 6224 6900 273.3 -45 90 92.2 122.7 240.2 1 C0309 6224 6900 273.3 -45 90 171.75 174.07 240.2 1 C0309 6224 6900 273.3 -45 90 171.75 191.29 240.2 1 C0309 6224 6900 273.3 -45 90 203.55 208.66 240.2 1 C0401 6526 7002 301.3 -60 90 6.82 7.33 119.35 1 C0403 6438 6990 265 -45 90 0 12.95 171.67 1 C0403 6438 6990 265 -45 90 83.05 88.4 171.67 1 C0403 6438 6990 265 -45 90 10.8 125.5 179.95 1 C0405 6302 7318 241 -55 90 110.8 125.5 179.95 1 C0406 6268 6						-45				
1 CD309 6224 6900 273.3 -45 90 917.7 174.07 240.2 1 CD309 6224 6900 273.3 -45 90 174.35 191.29 240.2 1 CD309 6224 6900 273.3 -45 90 203.56 208.66 240.2 1 CD401 6526 7002 301.3 -60 90 6.82 7.33 119.35 1 CD401 6526 7002 301.3 -60 90 0 1.255 171.67 1 CD403 6438 6990 265 -45 90 0 1.255 171.67 1 CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1 CD405 6302 7318 241 -55 90 113.69 172.06 179.95 1 CD406 6268 6811 228.6 -45 270 5.8 5.2.61 100.78 1 CD406 6268 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
1 CD309 6224 6900 273.3 -45 90 171.75 174.07 240.2 1 CD309 6224 6900 273.3 -45 90 173.35 191.29 240.2 1 CD401 6526 7002 301.3 -60 90 6.82 7.33 119.35 1 CD403 6438 6990 265 -45 90 0 12.95 171.67 1 CD403 6438 6990 265 -45 90 83.05 88.4 171.67 1 CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1 CD405 6302 7318 241 -55 90 153.69 172.06 179.95 1 CD406 6268 6811 228.6 -45 270 5.8 5.6.1 100.78 1 CD406 6268 6811 228.6 -45										
1CD309 6224 6900 273.3 -45 90 174.35 191.29 240.2 1CD401 6526 7002 301.3 -60 90 6.82 7.33 119.35 1CD401 6526 7002 301.3 -60 90 6.82 7.33 119.35 1CD403 6438 6990 265 -45 90 0 12.95 171.67 1CD403 6438 6990 265 -45 90 0 12.95 171.67 1CD403 6438 6990 265 -45 90 0 12.95 171.67 1CD403 6438 6990 265 -45 90 83.05 88.4 171.67 1CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1CD406 6268 6811 228.6 -45 270 5.8 52.61 100.78 1CD406 6268 6811 228.6 -45 270 5.8 52.61 100.78 1CD406 6268 6811 228.6 -45 270 0 5.45 152.91 1CD407 6452 7631 202 -50 270 0 5.45 152.91 1CD409 6482 7631										
1CD309 6224 6900 273.3 -45 90 203.56 208.66 240.2 1CD401 6526 7002 301.3 -60 90 6.82 7.33 119.35 1CD403 6438 6990 265 -45 900 12.95 171.67 1CD403 6438 6990 265 -45 900 12.95 171.67 1CD403 6438 6990 265 -45 900 12.95 171.67 1CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1CD405 6302 7318 241 -55 90 113.6 52.61 100.78 1CD406 6268 6811 228.6 -45 270 5.8 52.61 100.78 1CD406 6268 6811 228.6 -45 270 5.45 152.91 1CD409 6482 7631 202 -50 270 0 5.45 152.91 1CD409 6482 7431 202 -50 270										
1CD40165267002301.3-60906.827.33119.351CD40364386990265-4590012.95171.671CD40364386990265-4590012.95171.671CD40364386990265-4590012.95171.671CD40364386990265-459083.0588.4171.671CD40363027318241-5590110.8125.5179.951CD40563027318241-5590110.8125.5179.951CD40563027318241-5590113.69172.06179.951CD40563027318241-5590113.69172.06179.951CD40662686811228.6-452705.852.61100.781CD40662686811228.6-452705.852.61100.781CD40764827631202-5027005.45152.911CD40964827631202-5027005.45152.911CD40964827631202-5027005.45163.081CD41064857440206-60907.510.28163.08 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>										
1 CD401 6526 7002 301.3 -60 90 6.82 7.33 119.35 1 CD403 6438 6990 265 -45 90 0 12.95 171.67 1 CD403 6438 6990 265 -45 90 83.05 88.4 171.67 1 CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1 CD405 6302 7318 241 -55 90 153.69 172.06 179.95 1 CD406 6268 6811 228.6 -45 270 5.8 52.61 100.78 1 CD406 6268 6811 228.6 -45 270 0 5.45 152.91 1 CD407 6457 7182 221 -60 90 1.75 10.28 163.08 1 CD409 6482 7631 202 -50 270<										
1 CD403 6438 6990 265 -45 90 0 12.95 171.67 1 CD403 6438 6990 265 -45 90 83.05 88.4 171.67 1 CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1 CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1 CD405 6302 7318 241 -55 90 153.69 172.06 179.95 1 CD406 6268 6811 228.6 -45 270 5.8 52.61 100.78 1 CD407 6457 7182 221 -60 90 1.17 66.57 168.45 1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD409 6482 7631 202 -50 270 <td></td>										
1 CD403 6438 6990 265 -45 90 0 12.95 171.67 1 CD403 6438 6990 265 -45 90 88.05 88.4 171.67 1 CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1 CD406 6268 6811 228.6 -45 270 5.8 52.61 100.78 1 CD406 6268 6811 228.6 -45 270 5.8 52.61 100.78 1 CD407 6457 7182 221 -60 90 11.7 66.57 168.45 1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD409 6482 7631 202 -50 270 5.45 61.3 152.91 1 CD410 6485 7440 206 -60 90										
1 CD403 6438 6990 265 -45 90 83.05 88.4 171.67 1 CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1 CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1 CD406 6268 6811 228.6 -45 270 5.8 52.61 100.78 1 CD407 6457 7182 221 -60 90 11.7 66.57 168.45 1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD409 6482 7631 202 -50 270 5.45 61.3 152.91 1 CD409 6482 7431 202 -50 270 5.45 163.08 1 CD410 6485 7440 206 -60 90 7.5										
1 CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1 CD405 6302 7318 241 -55 90 110.8 125.5 179.95 1 CD406 6268 6811 228.6 -45 270 5.8 52.61 100.78 1 CD407 6457 7182 221 -60 90 11.7 66.57 168.45 1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD409 6485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 6485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 6485 7440 206 60 90								-		
1 CD405 G302 7318 241 -55 90 110.8 125.5 179.95 1 CD405 G302 7318 241 -55 90 153.69 172.06 179.95 1 CD406 G268 6811 228.6 -45 270 5.8 52.61 100.78 1 CD407 G457 7182 221 -60 90 11.7 G6.57 168.45 1 CD409 G482 7631 202 -50 270 0 5.45 152.91 1 CD409 G482 7631 202 -50 270 0 5.45 163.3 152.91 1 CD409 G482 7631 202 -50 270 0 5.45 163.3 152.91 1 CD410 G485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 G485 7440 206 <td></td>										
1 CD405 6302 7318 241 -55 90 153.69 172.06 179.95 1 CD406 6268 6811 228.6 -45 270 5.8 52.61 100.78 1 CD407 6457 7182 221 -60 90 11.7 66.57 168.45 1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD410 6485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 6485 7440 206 -60 90 9.03 149.96 1 CD411 6297 6690 231 -60 90 9.03										
1 CD406 6268 6811 228.6 -45 270 5.8 52.61 100.78 1 CD406 6268 6811 228.6 -45 270 5.8 52.61 100.78 1 CD407 6457 7182 221 -60 90 11.7 66.57 168.45 1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD410 6485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 6485 7440 206 -60 90 9.03 149.96 1 CD411 6297 6690 231 -60 90 9.03										
1 CD406 6268 6811 228.6 -45 270 5.8 52.61 100.78 1 CD407 6457 7182 221 -60 90 11.7 66.57 168.45 1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD409 6482 7631 202 -50 270 5.45 61.3 152.91 1 CD410 6485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 6485 7440 206 -60 90 10.28 22 163.08 1 CD410 6485 7440 206 -60 90 10.28 22 163.08 1 CD411 6297 6690 231 -60 90										
1 CD407 6457 7182 221 -60 90 11.7 66.57 168.45 1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD409 6482 7631 202 -50 270 0 5.45 61.3 152.91 1 CD410 6485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 6485 7440 206 -60 90 10.28 22 163.08 1 CD410 6485 7440 206 -60 90 10.28 22 163.08 1 CD411 6297 6690 231 -60 90 9.03 149.96 1 CD411 6297 6690 231 -60 90 40										
1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD409 6482 7631 202 -50 270 0 5.45 61.3 152.91 1 CD409 6482 7631 202 -50 270 5.45 61.3 152.91 1 CD410 6485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 6485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 6485 7440 206 -60 90 39.52 47.1 163.08 1 CD411 6297 6690 231 -60 90 0 9.03 149.96 1 CD411 6297 6690 231 -60 90 40.7 49.5 149.96 1 CD412 6253 6416 267 -50 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
1 CD409 6482 7631 202 -50 270 0 5.45 152.91 1 CD409 6482 7631 202 -50 270 5.45 61.3 152.91 1 CD410 6485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 6485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 6485 7440 206 -60 90 10.28 22 163.08 1 CD411 6297 6690 231 -60 90 0 9.03 149.96 1 CD411 6297 6690 231 -60 90 0 9.03 149.96 1 CD411 6297 6690 231 -60 90 40.7 49.5 149.96 1 CD411 6297 6690 231 -60 90 40.										
1 CD409 6482 7631 202 -50 270 5.45 61.3 152.91 1 CD410 6485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 6485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 6485 7440 206 -60 90 10.28 22 163.08 1 CD410 6485 7440 206 -60 90 10.28 22 163.08 1 CD411 6297 6690 231 -60 90 0 9.03 149.96 1 CD411 6297 6690 231 -60 90 40.7 49.5 149.96 1 CD411 6297 6690 231 -60 90 40.7 49.5 149.96 1 CD411 6297 6690 231 -60 90 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
1 CD410 6485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 6485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 6485 7440 206 -60 90 10.28 22 163.08 1 CD410 6485 7440 206 -60 90 39.52 47.1 163.08 1 CD411 6297 6690 231 -60 90 0 9.03 149.96 1 CD411 6297 6690 231 -60 90 0 9.03 149.96 1 CD411 6297 6690 231 -60 90 40.7 49.5 149.96 1 CD411 6297 6690 231 -60 90 40.7 49.5 149.96 1 CD412 6253 6416 267 -50 90 45.9 49.7 115.7 1 CD412 6253 6416 267										
1 CD410 6485 7440 206 -60 90 7.5 10.28 163.08 1 CD410 6485 7440 206 -60 90 10.28 22 163.08 1 CD410 6485 7440 206 -60 90 39.52 47.1 163.08 1 CD411 6297 6690 231 -60 90 0 9.03 149.96 1 CD411 6297 6690 231 -60 90 0 9.03 149.96 1 CD411 6297 6690 231 -60 90 9.68 25.5 149.96 1 CD411 6297 6690 231 -60 90 40.7 49.5 149.96 1 CD412 6253 6416 267 -50 90 45.9 49.7 115.7 1 CD413 6135 6788 233 -55 90 14										
1 CD410 6485 7440 206 -60 90 10.28 22 163.08 1 CD410 6485 7440 206 -60 90 39.52 47.1 163.08 1 CD411 6297 6690 231 -60 90 0 9.03 149.96 1 CD411 6297 6690 231 -60 90 0 9.03 149.96 1 CD411 6297 6690 231 -60 90 9.68 25.5 149.96 1 CD411 6297 6690 231 -60 90 40.7 49.5 149.96 1 CD412 6253 6416 267 -50 90 45.9 49.7 115.7 1 CD412 6253 6416 267 -50 90 45.9 49.7 115.7 1 CD413 6135 6788 233 -55 90 141.26 151.94 169.86 1 CD414 6539 7172.5 272.										
1 CD410 6485 7440 206 -60 90 39.52 47.1 163.08 1 CD411 6297 6690 231 -60 90 0 9.03 149.96 1 CD411 6297 6690 231 -60 90 0 9.03 149.96 1 CD411 6297 6690 231 -60 90 9.68 25.5 149.96 1 CD411 6297 6690 231 -60 90 40.7 49.5 149.96 1 CD412 6253 6416 267 -50 90 45.9 49.7 115.7 1 CD412 6253 6416 267 -50 90 141.26 151.94 169.86 1 CD413 6135 6788 233 -55 90 141.26 151.94 169.86 1 CD414 6539 7172.5 272.7 -60 90										
1 CD411 6297 6690 231 -60 90 0 9.03 149.96 1 CD411 6297 6690 231 -60 90 0 9.03 149.96 1 CD411 6297 6690 231 -60 90 9.68 25.5 149.96 1 CD412 6253 6416 267 -50 90 40.7 49.5 149.96 1 CD412 6253 6416 267 -50 90 45.9 49.7 115.7 1 CD412 6253 6416 267 -50 90 45.9 49.7 115.7 1 CD413 6135 6788 233 -55 90 141.26 151.94 169.86 1 CD414 6539 7172.5 272.7 -60 90 10.75 20.2 128.03 1 CD501 6134.5 6461.4 239.2 -50 270 0 34.8 115.5 1 CD502 6040.6 6186.9		1								
1 CD411 6297 6690 231 -60 90 0 9.03 149.96 1 CD411 6297 6690 231 -60 90 9.68 25.5 149.96 1 CD411 6297 6690 231 -60 90 40.7 49.5 149.96 1 CD412 6253 6416 267 -50 90 45.9 49.7 115.7 1 CD412 6253 6416 267 -50 90 45.9 49.7 115.7 1 CD413 6135 6788 233 -55 90 141.26 151.94 169.86 1 CD414 6539 7172.5 272.7 -60 90 10.75 20.2 128.03 1 CD501 6134.5 6461.4 239.2 -50 270 0 34.8 115.5 1 CD502 6040.6 6186.9 238.6 -55 270 20.37 43.6 140 1 CD502 6040.6 6186.9 </td <td></td>										
1 CD411 6297 6690 231 -60 90 9.68 25.5 149.96 1 CD411 6297 6690 231 -60 90 40.7 49.5 149.96 1 CD412 6253 6416 267 -50 90 45.9 49.7 115.7 1 CD412 6253 6416 267 -50 90 45.9 49.7 115.7 1 CD413 6135 6788 233 -55 90 141.26 151.94 169.86 1 CD414 6539 7172.5 272.7 -60 90 10.75 20.2 128.03 1 CD414 6539 7172.5 272.7 -60 90 10.75 20.2 128.03 1 CD501 6134.5 6461.4 239.2 -50 270 0 34.8 115.5 1 CD502 6040.6 6186.9 238.6 -55 270 20.37 43.6 140 1 CD502 6040.6										
1CD41162976690231-609040.749.5149.961CD41262536416267-509045.949.7115.71CD41262536416267-509045.949.7115.71CD41361356788233-5590141.26151.94169.861CD41465397172.5272.7-609010.7520.2128.031CD41465397172.5272.7-609010.7520.2128.031CD5016134.56461.4239.2-50270034.8115.51CD5026040.66186.9238.6-5527020.3743.61401CD5026040.66186.9238.6-5527020.3743.61401CD50464877416.2194.3-45270041341CD50464877416.2194.3-45270041341CD50464877416.2194.3-45270041341CD50464877416.2194.3-452706.523.4134										
1CD41262536416267-509045.949.7115.71CD41262536416267-509045.949.7115.71CD41361356788233-5590141.26151.94169.861CD41465397172.5272.7-609010.7520.2128.031CD41465397172.5272.7-609010.7520.2128.031CD5016134.56461.4239.2-50270034.8115.51CD5026040.66186.9238.6-5527020.3743.61401CD5026040.66186.9238.6-5527020.3743.61401CD50464877416.2194.3-45270041341CD50464877416.2194.3-45270041341CD50464877416.2194.3-45270041341CD50464877416.2194.3-452706.523.4134										149.96
1CD41262536416267-509045.949.7115.71CD41361356788233-5590141.26151.94169.861CD41465397172.5272.7-609010.7520.2128.031CD41465397172.5272.7-609010.7520.2128.031CD5016134.56461.4239.2-50270034.8115.51CD5026040.66186.9238.6-5527020.3743.61401CD5026040.66186.9238.6-5527020.3743.61401CD5026040.66186.9238.6-5527020.3743.61401CD50464877416.2194.3-45270041341CD50464877416.2194.3-45270041341CD50464877416.2194.3-45270041341CD50464877416.2194.3-45270041341CD50464877416.2194.3-452706.523.4134		-								
1 CD413 6135 6788 233 -55 90 141.26 151.94 169.86 1 CD414 6539 7172.5 272.7 -60 90 10.75 20.2 128.03 1 CD414 6539 7172.5 272.7 -60 90 10.75 20.2 128.03 1 CD501 6134.5 6461.4 239.2 -50 270 0 34.8 115.5 1 CD502 6040.6 6186.9 238.6 -55 270 20.37 43.6 140 1 CD502 6040.6 6186.9 238.6 -55 270 20.37 43.6 140 1 CD502 6040.6 6186.9 238.6 -55 270 20.37 43.6 140 1 CD504 6487 7416.2 194.3 -45 270 0 4 134 1 CD504 6487 7416.2 194.3 -45 270 0 4 134 1 CD504 6487 <t< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>115.7</td></t<>		1								115.7
1 CD414 6539 7172.5 272.7 -60 90 10.75 20.2 128.03 1 CD414 6539 7172.5 272.7 -60 90 10.75 20.2 128.03 1 CD501 6134.5 6461.4 239.2 -50 270 0 34.8 115.5 1 CD502 6040.6 6186.9 238.6 -55 270 20.37 43.6 140 1 CD502 6040.6 6186.9 238.6 -55 270 20.37 43.6 140 1 CD502 6040.6 6186.9 238.6 -55 270 20.37 43.6 140 1 CD502 6040.6 6186.9 238.6 -55 270 20.37 43.6 140 1 CD504 6487 7416.2 194.3 -45 270 0 4 134 1 CD504 6487 7416.2 194.3 -45 270 0 4 134 1 CD504 6487 <										
1CD41465397172.5272.7-609010.7520.2128.031CD5016134.56461.4239.2-50270034.8115.51CD5026040.66186.9238.6-5527020.3743.61401CD5026040.66186.9238.6-5527020.3743.61401CD5026040.66186.9238.6-5527020.3743.61401CD5026040.66186.9238.6-5527043.7152.11401CD50464877416.2194.3-45270041341CD50464877416.2194.3-452706.523.41341CD50464877416.2194.3-452706.523.4134										
1CD5016134.56461.4239.2-50270034.8115.51CD5026040.66186.9238.6-5527020.3743.61401CD5026040.66186.9238.6-5527020.3743.61401CD5026040.66186.9238.6-5527020.3743.61401CD5026040.66186.9238.6-5527043.7152.11401CD50464877416.2194.3-45270041341CD50464877416.2194.3-45270041341CD50464877416.2194.3-452706.523.4134										
1 CD502 6040.6 6186.9 238.6 -55 270 20.37 43.6 140 1 CD502 6040.6 6186.9 238.6 -55 270 20.37 43.6 140 1 CD502 6040.6 6186.9 238.6 -55 270 20.37 43.6 140 1 CD502 6040.6 6186.9 238.6 -55 270 43.71 52.1 140 1 CD504 6487 7416.2 194.3 -45 270 0 4 134 1 CD504 6487 7416.2 194.3 -45 270 0 4 134 1 CD504 6487 7416.2 194.3 -45 270 0 4 134 1 CD504 6487 7416.2 194.3 -45 270 6.5 23.4 134										115.5
1CD5026040.66186.9238.6-5527020.3743.61401CD5026040.66186.9238.6-5527043.7152.11401CD50464877416.2194.3-45270041341CD50464877416.2194.3-45270041341CD50464877416.2194.3-45270041341CD50464877416.2194.3-452706.523.4134										140
1 CD502 6040.6 6186.9 238.6 -55 270 43.71 52.1 140 1 CD504 6487 7416.2 194.3 -45 270 0 4 134 1 CD504 6487 7416.2 194.3 -45 270 0 4 134 1 CD504 6487 7416.2 194.3 -45 270 0 4 134 1 CD504 6487 7416.2 194.3 -45 270 0 4 134										140
1 CD504 6487 7416.2 194.3 -45 270 0 4 134 1 CD504 6487 7416.2 194.3 -45 270 0 4 134 1 CD504 6487 7416.2 194.3 -45 270 0 4 134 1 CD504 6487 7416.2 194.3 -45 270 0 4 134										140
1 CD504 6487 7416.2 194.3 -45 270 0 4 134 1 CD504 6487 7416.2 194.3 -45 270 0 4 134										134
1 CD504 6487 7416.2 194.3 -45 270 6.5 23.4 134										134
									-	134
ערטטע 1410,2 באר 174,3 -451 באטערטע 140,2 באר 174,3 באר 154,3		CD504	6487	7416.2	194.3	-45	270	23.4	57.01	134

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 10 of 21

CP_1409	hole id	x	y	z	dip	azimuth	depth_from	depth to	max_depth
_	CD504	6487	7416.2	194.3	-45	270	68.18	86.5	134
	CD506	6014.1	6186.8	238.1	-50	90	0	23.5	136.4
	CD506	6014.1	6186.8	238.1	-50	90	0	23.5	136.4
	CD506	6014.1	6186.8	238.1	-50	90	27.6	33.45	136.4
	CD506	6014.1	6186.8	238.1	-50	90	41.42	61.5	136.4
	CD506	6014.1	6186.8	238.1	-50	90	68	87.9	136.4
	CD506	6014.1	6186.8	238.1	-50	90	94.3	97.65	136.4
	CD506	6014.1	6186.8	238.1	-50	90	97.65	109.8	136.4
	CD507	6446.2	7675.1	178.8	-45	90	0	3.1	101.6
	CD507	6446.2	7675.1	178.8	-45	90	0	3.1	101.6
	CD507	6446.2	7675.1	178.8	-45	90	3.1	16.8	101.6
	CD508	6453.3	7497.9	184.5	-50	90	16.9	52	116.1
	CD508	6453.3	7497.9	184.5	-50	90	16.9	52	116.1
	CD508	6453.3	7497.9	184.5	-50	90	52	65	116.1
	CD508	6453.3	7497.9	184.5	-50	90	65	65.21	116.1
	CD508	6453.3	7497.9	184.5	-50	90	65.21	73.8	116.1
	CD508	6453.3	7497.9	184.5	-50	90	74.24	81.2	116.1
-	CD508	6200	6502.9	223.3	-50	90	0	12.28	29
	CD509	6200	6502.9	223.3	-55	90	0	12.28	29
	CD509 CD510	6435.7	7227.5	199.1	-55	270	0	12.28	81.9
	CD510		7227.5	199.1	-50	270	0	16.3	81.9
	CD510 CD511	6435.7	6954	204.5	-50				66.7
		6321.7				270	3	24.9	
	CD512	6438.5	7225.5	198.3	-45	90	0	5.5	143
	CD512	6438.5	7225.5	198.3	-45	90	0	5.5	143
	CD512	6438.5	7225.5	198.3	-45	90	5.5	13.8	143
	CD512	6438.5	7225.5	198.3	-45	90	16.8	51.62	143
	CD513	6233.3	6690.5	209.7	-50	270	0	28.21	80.5
	CD513	6233.3	6690.5	209.7	-50	270	0	28.21	80.5
	CD514	6344.5	7000	203.7	-45	90	0	7.9	146
	CD514	6344.5	7000	203.7	-45	90	0	7.9	146
	CD514	6344.5	7000	203.7	-45	90	15	41	146
	CD514	6344.5	7000	203.7	-45	90	45.86	50.53	146
	CD514	6344.5	7000	203.7	-45	90	54.1	82	146
	CD514	6344.5	7000	203.7	-45	90	103.6	112.9	146
	CD515	6078.4	6277.7	238.9		270	17.04		104.3
	CD515	6078.4	6277.7	238.9	-55	270	17.04	67.03	104.3
	CD516	6119.4	6415.4	240.4	-60	90	10.7	16.7	151.2
	CD516	6119.4	6415.4	240.4	-60	90	10.7	16.7	151.2
	CD516	6119.4	6415.4	240.4	-60	90	56.5	75.2	151.2
	CD516	6119.4	6415.4	240.4	-60	90	86.9	100.7	151.2
	CD517	5898	6000	222.5	-40	90	63.6	72.2	152.4
	CD517	5898	6000	222.5	-40	90	63.6	72.2	152.4
	CD520	5968	6096.2	213.23	-40	90	21.9	38.1	158.3
	CD520	5968	6096.2	213.23	-40	90	21.9	38.1	158.3
	CD520	5968	6096.2	213.23	-40	90	48.8	54.94	158.3
	CD520	5968	6096.2	213.23	-40	90	84.45	103.51	158.3
	CD601	6222	6645	209	-45	90	3.5	29.2	117.1
	CD601	6222	6645	209	-45	90	3.5	29.2	117.1
	CD601	6222	6645	209	-45	90	49.8	83.31	117.1
1	CD602	6173	6503	213	-45	270	0		146.6

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 11 of 21

CP_1409	hole_id	x	у	z	dip	azimuth	depth_from	depth_to	max_depth
1	CD602	6173	6503	213	-45	270	0	19.3	146.6
1	CD603	6135.8	6417	214.7	-45	270	78	81.5	140
1	CD604	6332	6689.4	243.2	-50	90	11.3	26.5	113.3
1	CD604	6332	6689.4	243.2	-50	90	11.3	26.5	113.3
1	CD605	6424.1	7586	170.8	-45	270	60.6	83.9	151
	CD605	6424.1	7586	170.8	-45	270	60.6	83.9	151
	CD606	6424.1	7586	170.8	-45	90	9	15.6	184
	CD606	6424.1	7586	170.8	-45	90	9	15.6	184
	CD606	6424.1	7586	170.8	-45	90	31.1	50	184
		6424.1	7586	170.8	-45	90	50	59.7	184
	CD606	6424.1	7586	170.8	-45	90	127.5	141.2	184
	CD606	6424.1	7586	170.8	-45	90	150.5	155.1	184
	CD606	6424.1	7586	170.8	-45	90	155.1	162.3	184
	CD607	6398.3	7181.3	187.5	-45	270	49.62	61.48	149.5
	CD608	6360	7090.2	190.9	-40	90	49	58.7	169.5
	CD608	6360	7090.2	190.9	-40	90	49	58.7	169.5
	CD608	6360	7090.2	190.9	-40	90	75.9	83.8	169.5
	CD609	6360	7090.2	190.9	-45	270	0.2	13	91.8
	CD611	6349.2	6832	229.5	-40	90	6.43	17.8	140
	CD611	6349.2	6832	229.5	-40	90	6.43	17.8	140
	CD611	6349.2	6832	229.5	-40	90	77.6	84.8	140
	CD612	6410	7498.5	173.2	-40	270	65.5	70.5	97.4
	CD612	6436	7498.3	222.5	-40	90	17.6	31.8	169
	CD613	6436	7090	222.5	-40	90	17.6	31.8	169
	CD613 CD613	6436	7090	222.5	-40	90	75.4	84.4	169
	CD613 CD614	6149		230.29	-40	90	0.5		109
	CD614 CD614	6149	6279.5 6279.5		-40	90	0.5	23.63 23.63	
	CD614 CD614		6279.5	230.29	-40	90			118 118
		6149		230.29			31.8	37.4	
	CD701	6444.2	7539.5	172.3	-45	90	6.3	20.7	194.3
	CD701	6444.2	7539.5	172.3	-45	90	6.3	20.7	194.3
	CD701	6444.2	7539.5	172.3	-45	90	49.4	68.69	194.3
	CD701	6444.2	7539.5	172.3	-45	90	69.2	82	194.3
	CD701	6444.2	7539.5	172.3	-45	90	106.7	113.5	194.3
	CD701	6444.2	7539.5	172.3	-45	90	126.7	130	194.3
	CD701	6444.2	7539.5	172.3	-45	90	144.6	152.4	194.3
	CD702	6427	7440	174.3	-45	90	0	34.5	119.1
	CD702	6427	7440	174.3	-45	90	0	34.5	119.1
	CD702	6427	7440	174.3	-45	90	34.5	55.6	119.1
	CD702	6427	7440	174.3	-45	90	58.25	71.4	119.1
	CD702	6427	7440	174.3	-45	90	84.1	90.3	119.1
	CD703	6420	7364	175.7	-43	90	0		155.6
	CD703	6420	7364	175.7	-43	90	0	11.55	155.6
	CD703	6420	7364	175.7	-43	90	11.55	22.3	155.6
	CD703	6420	7364	175.7	-43	90	25.3	69	155.6
	CD703	6420	7364	175.7	-43	90	75.6	82.5	155.6
	CD703	6420	7364	175.7	-43	90	82.5	90	155.6
	CD703	6420	7364	175.7	-43	90	90	98.1	155.6
	CD703	6420	7364	175.7	-43	90	98.1	104.9	155.6
	CD703	6420	7364	175.7	-43	90	113.5	130.1	155.6
1	CD704	6411.7 Dit Comb	7317.5 inod Dril	176	-40	90	0	11.8	98.5

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 12 of 21

CP_1409	hole_id	x	y	z	dip	azimuth	depth_from	denth to	max_depth
_	CD704	6 411.7	7317.5	176	-40	90	0	11.8	98.5
	CD704	6411.7	7317.5	176	-40	90	13.9	30	98.5
	CD704	6411.7	7317.5	176	-40	90	31.2	50.3	98.5
	CD704			176	-40	<u> </u>			
		6411.7	7317.5		-40	90	53.1	71.4	98.5
	CD705	6423	7273	176.2	-		0	37.2	131.2
	CD705	6423	7273	176.2	-40	90 90	0	37.2	131.2
	CD705	6423	7273	176.2	-40		37.2	52.6	131.2
	CD705	6423	7273	176.2	-40	90	71.5	78.9	131.2
	CD706	6381	7136	190.5	-40	90	65.8	70.5	115.85
	CD706	6381	7136	190.5	-40	90	65.8	70.5	115.85
	CD707	6304.9	7001	193.5	-40	90	0	4.5	112.5
	CD707	6304.9	7001	193.5	-40	90	0	4.5	112.5
	CD708	6259.8	6873.5	196.2	-45	90	18	58.06	120.5
	CD708	6259.8	6873.5	196.2	-45	90	18	58.06	120.5
	CD708	6259.8	6873.5	196.2	-45	90	59.17	88.1	120.5
	CD709	6166.2	6640.8	201.6	-45	90	0	3.75	100.5
	CD709	6166.2	6640.8	201.6	-45	90	0	3.75	100.5
	CD709	6166.2	6640.8	201.6	-45	90	24	28.55	100.5
1	CD709	6166.2	6640.8	201.6	-45	90	53.1	76.5	100.5
1	CD709	6166.2	6640.8	201.6	-45	90	86	93.92	100.5
1	CD711	6151.5	6369.5	205.2	-40	90	0	5.5	91.5
1	CD711	6151.5	6369.5	205.2	-40	90	0	5.5	91.5
1	CD712	6098.8	6234.5	208.3	-40	270	0	13.3	144
1	CD712	6098.8	6234.5	208.3	-40	270	0	13.3	144
1	CD712	6098.8	6234.5	208.3	-40	270	28.8	41.8	144
1	CD712	6098.8	6234.5	208.3	-40	270	41.8	44	144
1	CD712	6098.8	6234.5	208.3	-40	270	44	78.3	144
1	CD712	6098.8	6234.5	208.3	-40	270	78.3	113.4	144
1	CD713	6359	7043	192.7	-40	90	0	0.65	112
1	CD713	6359	7043	192.7	-40	90	0	0.65	112
1	CD713	6359	7043	192.7	-40	90	26.2	42	112
1	CD713	6359	7043	192.7	-40	90	46.2	56	112
1	CD714	6149.5	6462.5	204.3	-45	90	5.8	21.4	131.6
1	CD714	6149.5	6462.5	204.3	-45	90	5.8	21.4	131.6
1	CD714	6149.5	6462.5	204.3	-45	90	23.25	48.1	
	CD714	6149.5	6462.5	204.3	-45	90	52.39		
1	CD714	6149.5	6462.5	204.3	-45	90	83.53	83.6	131.6
1	CD715	6219.5	6500	202.8	-50	270	50.19	52.77	91.4
	CD715	6219.5	6500	202.8	-50	270	50.19	52.77	91.4
	CD716	6500	7719.7	158	-40	270	0	49.58	
	CD716	6500	7719.7	158	-40	270	0	49.58	
	CD716	6500	7719.7	158	-40	270	49.93	51.1	157.2
	CD716	6500	7719.7	158	-40	270	51.2	66.6	
	CD716	6500	7719.7	158	-40	270	66.6		
	CD716	6500	7719.7	158	-40	270	90.6		
	CD716	6500	7719.7	158	-40	270	119.4	110.2	157.2
	CD710 CD717	6237	6830	197.2	-40	90	0		137.2
	CD717 CD717	6237	6830	197.2	-50	90	0		
							-		
	CD717	6237	6830	197.2	-50	90	24.3		
1	CD717	6237	6830	197.2	-50	90	60.8		120

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 13 of 21

CP 1409	hole id	x	v	Z	dip	azimuth	depth_from	depth to	max_depth
	CD717	6237	y 6830	197.2	-50	90	89.1	94.3	120
	CD717	6237	6830	197.2	-50	90	100.25	111.28	120
	CD718	6193.1	6736.5	197.2	-45	90	27.3	42.6	120
	CD718	6193.1	6736.5	199.5	-45	90	27.3	42.6	129.4
	CD718	6193.1	6736.5	199.5	-45	90	54.52	55.03	129.4
	CD718	6193.1	6736.5	199.5	-45	90	55.03	55.85	129.4
	CD718	6193.1	6736.5	199.5	-45	90	55.85	65.26	129.4
	CD719	6233.9	6688.8	200.3	-40	90	0	4.5	120.4
	CD719	6233.9	6688.8	200.3	-40	90	0	4.5	120
	CD719	6233.9	6688.8	200.3	-40	90	4.5	9.4	120
	CD719	6233.9	6688.8	200.3	-40	90	9.4	18.7	120
	CD719	6233.9	6688.8	200.3	-40	90	20.9	25.91	120
	CD719 CD719	6233.9	6688.8	200.3	-40	90	35.75	76.6	120
	CD719 CD720	6244.5	6599.5	200.3	-40	90	7	12.72	120
	CD720	6244.5	6599.5	201.85	-45	90	7	12.72	104.7
	CD720	6244.5	6599.5	201.85	-45	90	12.99	26.3	104.7
	CD720	6244.5	6599.5	201.85	-45	90	26.3	48.7	104.7
	CD720 CD720	6244.5	6599.5	201.85	-45	90	48.7	48.7 64.5	104.7
	CD720 CD721	6107.5	6325	201.85	-43	90	48.7	8	104.7
	CD721 CD721	6107.5	6325	207.25	-40	90	0	ہ 8	103.5
	CD721 CD721	6107.5	6325	207.25	-40	90	32.9	45.7	103.5
	CD721 CD722	6075	6235	207.23	-40	90	0	12.5	90
	CD722 CD722	6075	6235	208.3	-45	90	0	12.5	90
	CD722 CD722	6075	6235	208.3	-45	90	17.5	51.7	90
	CD722 CD723	6041.6	6140	208.3	-45	270	17.5	29.9	76.5
	CD723 CD723	6041.6	6140	233.3	-45	270	10.2	29.9	76.5
	CD723 CD724	6115	6139.7	235.5	-45	270	32.2	44.9	102
	CD724 CD724	6115	6139.7	240.9	-45	270	32.2	44.9	102
	CD724 CD724	6115	6139.7	240.9	-45	270	53.11	64.35	102
	CD725	6400	7628.8	159.75	-43	90	44.04	80	204
	CD725	6400	7628.8	159.75	-40	90	44.04	80	204
	CD725	6400	7628.8	159.75	-40	90	84.85	95	204
	CD725	6400	7628.8	159.75	-40	90	84.85 95	123	204
	CD725 CD726	6360.5	6958.1	159.75	-40	90	3.8	125	204 89
	CD726		6958.1	194	-40	90	3.8	16	89
	CD726	6360.5 6360.5	6958.1	194	-40	90	17.12	27.3	
	CD726	6360.5	6958.1	194	-40	90	31.2	51.28	89
	CD726	6360.5	6958.1	194	-40	90	54.19	67.57	89
	CD726	6360.5	6958.1	194	-40	90	69.54	72.98	89
	CD720 CD727	6294.6	6787.6	194	-40	90	09.54	11.2	100
	CD727 CD727	6294.6	6787.6	198.3	-40	90	0	11.2	100
	CD727 CD727	6294.6	6787.6	198.3	-40	90	15.2	33	100
-	CD727 CD727	6294.6	6787.6	198.3	-40	90	62.5	90	100
	CD727 CD728	6139.7	6498.8	204.8	-40 -45	90	02.5	90	99.7
	CD728 CD728			204.8	-45 -45	90	0	9.5	99.7 99.7
	CD728 CD728	6139.7	6498.8	204.8	-45 -45	90 90		9.5	99.7
	CD728 CD728	6139.7 6139.7	6498.8 6498.8	204.8	-45 -45	90 90	24.8 60.5	62.4	99.7
	CD729	6132.6	6553	203	-40	90	41.2	47.1	164.5
	CD729	6132.6	6553	203	-40	90	41.2	47.1	164.5
1	CD729	6132.6	6553	203	-40	90	56.8	64.4	164.5

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 14 of 21

CP_1409	hole_id	x	y	z	dip	azimuth	depth_from	depth_to	max_depth
1	 CD729	6132.6	6553	203	-40	90		78.08	164.5
	CD729	6132.6	6553	203	-40	90	96.9	130.7	164.5
	CD729	6132.6	6553	203	-40	90	131.2	149.14	164.5
	CD729	6132.6	6553	203	-40	90	149.14	149.65	164.5
	CD730	6062.6	6279	208.1	-40	90	0	20.5	126
	CD730	6062.6	6279	208.1	-40	90	0	20.5	126
	CD730	6062.6	6279	208.1	-40	90	33.9	53.2	126
	CD731	6386	7227.2	178	-40	90	35.7	52.5	110
	CD732	6414.3	7182	179.1	-50	90	0	7.19	105.5
	CD801	6450.5	7364.2	143	-45	270	0	8.8	98.5
1	CD801	6450.5	7364.2	143	-45	270	0	8.8	98.5
	CD801	6450.5	7364.2	143	-45	270	10.29	16.86	98.5
	CD801	6450.5	7364.2	143	-45	270	34	58.3	98.5
	CD801	6465	7410.9	143.15	-45	90	0 0	12.47	85
	CD802	6465	7410.9	143.15	-45	90	0	12.47	85
	CD802	6465	7410.9	143.15	-45	90	13.12	12.47	85
	CD802 CD802	6465	7410.9	143.15	-45	90	15.12	35	85
	CD802 CD802	6465	7410.9	143.15	-45	90	35	75.4	85
	CD802 CD803	6470.3	7410.5	143.13	-45	270	0	1.54	91.2
	CD803	6470.3	7439.5	141.7	-45	270	0	1.54	91.2
	CD803	6470.3	7439.5	141.7	-45	270	4.29	25.7	91.2
	CD803	6470.3	7439.5	141.7	-45	270	28.8	54.44	91.2
	CD803			141.7	-45		44.9		
		6449.8	7272.2			270		66.5	80.8
	CD804	6449.8	7272.2	145.4	-40	270	44.9	66.5	80.8
	CD805	6458.6	7719.5	128.6	-45	90	0	0.73	57
	CD805	6458.6	7719.5	128.6	-45	90	0	0.73	57
1	CD805	6458.6	7719.5	128.6	-45	90	2.4	19.7	57
	CD806	6186.1	6462.6	154.8	-45	270	46.82	54	54
	CD807	6015	6235.4	155.9	-50	90	0.4	28.9	80.3
	CD807	6015	6235.4	155.9	-50	90	0.4	28.9	80.3
	CD807	6015	6235.4	155.9	-50	90	28.9	42.1	80.3
	CD807	6015	6235.4	155.9	-50	90	67.9	75.6	80.3
	CD808	6042.8	6278.8	147	-45	90	0	16.3	80.3
	CD808	6042.8	6278.8	147	-45	90	0	16.3	80.3
	CD808	6042.8	6278.8	147	-45	90	40.7	45.7	
	CD808	6042.8	6278.8	147	-45	90	45.7	52.7	
	CD808	6042.8	6278.8	147	-45	90	52.7	75.7	80.3
	CD810	6124.9	6502.1	155.1	-45	90	28.38		77
	CD810	6124.9	6502.1	155.1	-45	90	28.38	38.31	77
	CD811	6446.8	7540.9	130.7	-50	90	0		
	CD811	6446.8	7540.9	130.7	-50	90	0		
	CD811	6446.8	7540.9	130.7	-50	90	10.72	17.2	100
	CD811	6446.8	7540.9	130.7	-50	90	17.2	27.6	
	CD811	6446.8	7540.9	130.7	-50	90	27.6	51.86	
	CD811	6446.8	7540.9	130.7	-50	90	53.49	58.8	
	CD812	6445.9	7677.6	126.9	-45	90	0	9.53	117
	CD812	6445.9	7677.6	126.9	-45	90	0		
	CD812	6445.9	7677.6	126.9	-45	90	19.9		117
	CD812	6445.9	7677.6	126.9	-45	90	23.5		117
1	CD812	6445.9 Dit Comb	7677.6	126.9	-45	90	33	65.3	117

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 15 of 21

CP 1409	hole_id	х	v	z	dip	azimuth	depth_from	depth_to	max_depth
	CD812	6445.9	7 677.6	126.9	-45	90	65.3	73.7	117
	CD813	6470.1	7625.5	128.3	-50	270	00.0	42.9	90
	CD813	6470.1	7625.5	128.3	-50	270	0	42.9	90
	CD901	6573.4	7745	128.5	-54	270	105	115	301.5
-	CD901	6573.4	7745	145	-54	270	105	115	301.5
	CD901 CD901		7745	145	-54	270			
	CD901 CD901	6573.4	7745		-54	270	124.4	162.1	301.5
		6573.4		145			164	255.8	301.5
-	CD901	6573.4	7745	145	-54	270	264.2	292.5	301.5
	CD903	5926	6158.3	209.5	-50	90	107.3	113.4	241.3
	CD903	5926	6158.3	209.5	-50	90	107.3	113.4	241.3
	CD903	5926	6158.3	209.5	-50	90	115.55	118.5	241.3
	CD903	5926	6158.3	209.5	-50	90	127.6	171	241.3
	CD903	5926	6158.3	209.5	-50	90	181.86	202.01	241.3
	CD903	5926	6158.3	209.5	-50	90	210.34	211.51	241.3
1	CD904	5942.2	6325.1	192.5	-50	90	178.8	187.3	272
1	CD904	5942.2	6325.1	192.5	-50	90	178.8	187.3	272
1	CD904	5942.2	6325.1	192.5	-50	90	196.8	197.95	272
1	CD904	5942.2	6325.1	192.5	-50	90	197.95	198.12	272
1	CD904	5942.2	6325.1	192.5	-50	90	198.12	219.3	272
1	CD905	6061.8	6499.9	173	-50	90	95.29	109.05	247
1	CD905	6061.8	6499.9	173	-50	90	95.29	109.05	247
1	CD905	6061.8	6499.9	173	-50	90	123.3	126.5	247
1	CD905	6061.8	6499.9	173	-50	90	138.3	142.3	247
1	CD905	6061.8	6499.9	173	-50	90	152.1	178.4	247
1	CD905	6061.8	6499.9	173	-50	90	196.8	212.03	247
1	CD905	6061.8	6499.9	173	-50	90	212.03	212.04	247
	CD905	6061.8	6499.9	173	-50	90	212.05	230.7	247
	CD906	6163	6780	168.5	-50	83	96.8	107.7	236.7
	CD906	6163	6780	168.5	-50	83	96.8	107.7	236.7
	CD906	6163	6780	168.5	-50	83	114.48	136.8	236.7
	CD908	6599	7540	183	-53	270	82.4	92.3	250
	CD908	6599	7540	183	-53	270	82.4	92.3	250
	CD908	6599	7540	183	-53	270	93.7	97.1	250
	CD908	6599	7540	183	-53	270	128.5	139.1	250
	CD908	6599	7540	183	-53	270	153.18	169.67	250
	CD908	6599	7540	183	-53	270	169.96	224.4	250
	CD908 CD910	6111	6599	160	-33	90	93.04	93.51	230
	CD910 CD910	6111	6599	160	-45	90	93.04	93.51	242
	CD910	6111	6599	160	-45	90	116.2	134.1	242
	CD910	6111	6599	160	-45	90	134.53	166.81	242
	CD911	6007	6095	222	-60	90	0	24	111
	CD911	6007	6095	222	-60	90	0	24	111
	CD911	6007	6095	222	-60	90	58	84	111
	CD913	5948	6045	222	-60	90	28	42	96
	CD913	5948	6045	222	-60	90	28	42	96
	CDDH07001	6421.05	7816.59	111.71	-53.56	72.632	4.76	13.36	20
-	CDDH07001	6421.05	7816.59	111.71	-53.56	72.632	4.76	13.36	20
	CDDH07002	6419.03	7816.03	111.54	-86.266	244.445	5.6	20	20
	CDDH13011	6017.12	6673	188.577	-50.62	91.335	280.75	287.8	410
1	CDDH13012	6056.434			-59.73	91.4823	279.3	300.5	400

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 16 of 21

CD 1400	holo id	v		-	din	azimuth	donth from	donth to	may donth
CP_1409	hole_id	X	y	Z	dip	azimuth	depth_from		max_depth
	CDDH13012	6056.434	6746.771	193.826	-59.73	91.4823	279.3	300.5	400
	CDDH13012	6056.434	6746.771	193.826	-59.73	91.4823	305.6	311.2	400
	CDDH13012	6056.434	6746.771	193.826	-59.73	91.4823	328.2	360.93	400
	CDDH13013	6174.863	6829.117	168.983	-53.71	126.785	99	111	262.1
	CDDH13013	6174.863	6829.117	168.983	-53.71	126.785	99	111	262.1
	CDDH13013	6174.863	6829.117	168.983	-53.71	126.785	121.53	138.25	262.1
	CDDH13013	6174.863	6829.117	168.983	-53.71	126.785	145.4	167.9	262.1
	CDDH13013	6174.863	6829.117	168.983	-53.71	126.785	174.1	184.9	262.1
	CDDH13013	6174.863	6829.117	168.983	-53.71	126.785	186.9	212.9	262.1
	CDDH13014	6175.226	6829.948	169.139	-52.04		82.72	92.3	315.2
-	CDDH13014	6175.226	6829.948	169.139	-52.04		82.72	92.3	315.2
	CDDH13014	6175.226	6829.948	169.139	-52.04		112.3	120.9	315.2
	CDDH13014	6175.226	6829.948	169.139	-52.04		199.9	218	315.2
	CDDH13014	6175.226	6829.948	169.139	-52.04		243.5	255.5	315.2
	CDDH13014	6175.226	6829.948	169.139	-52.04		271.1	281.62	315.2
	CDDH13014	6175.226	6829.948	169.139	-52.04		281.62	281.63	315.2
	CDDH13014	6175.226	6829.948	169.139	-52.04	81.0741667	281.63	292.4	315.2
-	CDDH13015	6263.191	6927.95	155.053	-57.38	112.68	89.37	90.89	229.8
	CDDH13015	6263.191	6927.95	155.053	-57.38	112.68	89.37	90.89	229.8
	CDDH13015	6263.191	6927.95	155.053	-57.38	112.68	116.29	117.98	229.8
	CDDH13015	6263.191	6927.95	155.053	-57.38	112.68	133.6	140.6	229.8
	CDDH13015	6263.191	6927.95	155.053	-57.38	112.68	148.6	171.1	229.8
	CDDH13015	6263.191	6927.95	155.053	-57.38	112.68	171.1	174.8	229.8
	CDDH13015	6263.191	6927.95	155.053	-57.38	112.68	182.3	184	229.8
	CDDH13016	6264.217	6930.421	155.011	-50.97	77.194	102.57	113.78	230.1
	CDDH13016	6264.217	6930.421	155.011	-50.97	77.194	102.57	113.78	230.1
	CDDH13016	6264.217	6930.421	155.011	-50.97	77.194	121.9	128.43	230.1
	CDDH13016	6264.217	6930.421	155.011	-50.97	77.194	145.82	161.05	230.1
	CDDH13016	6264.217	6930.421	155.011	-50.97	77.194	177.33	187.12	230.1
	CDDH13016	6264.217	6930.421	155.011	-50.97	77.194	187.12	191.5	230.1
	CDDH13017	6176.225	6828.275	168.225	-51.97	98.46	76.33	86.67	278.3
	CDDH13017	6176.225	6828.275	168.225	-51.97	98.46	76.33	86.67	278.3
	CDDH13017	6176.225	6828.275	168.225	-51.97	98.46	112.3	122.4	278.3
	CDDH13017	6176.225	6828.275	168.225	-51.97	98.46	124.3	159.15	278.3
	CDDH13017	6176.225	6828.275		-51.97	98.46	164.1	177	278.3
	CDDH13018				-63.85	90.021	45.3	54.17	163.7
	CDDH13018	6338.826			-63.85	90.021	45.3	54.17	163.7
	CDDH13018	6338.826	7000.721	144.488	-63.85	90.021	60.55	82.24	163.7
	CDDH13018	6338.826	7000.721	144.488	-63.85	90.021	82.24	82.82	163.7
	CDDH13018	6338.826	7000.721	144.488	-63.85	90.021	82.82	102.7	163.7
	CDDH13018	6338.826	7000.721	144.488	-63.85	90.021	109.15	138.8	163.7
-	CDDH13019	6323.899	7087.316		-56.5	116.732	28.5	52.62	195.2
-	CDDH13019	6323.899	7087.316		-56.5	116.732	28.5	52.62	195.2
1	CDDH13019	6323.899	7087.316	139.919	-56.5	116.732	72.7	106.8	195.2
1	CDDH13019	6323.899	7087.316	139.919	-56.5	116.732	110.5	127	195.2
1	CDDH13019	6323.899	7087.316	139.919	-56.5	116.732	130.8	163.8	195.2
1	CDDH13020	6323.918	7088.568	139.932	-54.7	81.62	38.2	49.6	219.6
1	CDDH13020	6323.918	7088.568	139.932	-54.7	81.62	38.2	49.6	219.6
1	CDDH13020	6323.918	7088.568	139.932	-54.7	81.62	59.35	81	219.6
1	CDDH13020	6323.918	7088.568	139.932	-54.7	81.62	93.45	124.3	219.6

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 17 of 21

CP_1409	hole_id	х	у	z	dip	azimuth	depth_from	depth_to	max_depth
1	CDDH13020	6323.918	7088.568	139.932	-54.7	81.62	130	139.8	219.6
1	CDDH13020	6323.918	7088.568	139.932	-54.7	81.62	150.11	174.35	219.6
1	CDDH13021	6323.512	7090.779	139.719	-48.83	54.8766	52.8	56.7	246.5
	CDDH13021	6323.512	7090.779	139.719	-48.83	54.8766	52.8	56.7	246.5
1	CDDH13021	6323.512	7090.779	139.719	-48.83	54.8766	65.23	68.05	246.5
1	CDDH13021	6323.512	7090.779	139.719	-48.83	54.8766	69.1	98.3	246.5
	CDDH13021	6323.512	7090.779	139.719	-48.83	54.8766	122.2	148.4	246.5
1	CDDH13021	6323.512	7090.779	139.719	-48.83	54.8766	151.9	179.9	246.5
	CDDH13021	6323.512	7090.779	139.719	-48.83	54.8766	181.6	185.1	246.5
	CDDH13021	6323.512	7090.779	139.719	-48.83	54.8766	189.6	202.4	246.5
	CDDH14001	6294.109	6850.427	141.644	-59.16	89.7492	0	9.6	314.2
	CDDH14001	6294.109	6850.427	141.644	-59.16	89.7492	0	9.6	314.2
	CDDH14001	6294.109	6850.427	141.644	-59.16	89.7492	16.98	19.37	314.2
1	CDDH14001	6294.109	6850.427	141.644	-59.16	89.7492	19.53	37.79	314.2
1	CDDH14001	6294.109	6850.427	141.644	-59.16	89.7492	44.8	54	314.2
	CDDH14001	6294.109	6850.427	141.644	-59.16	89.7492	98.42	109.25	314.2
	CDDH14001	6294.109	6850.427	141.644	-59.16	89.7492	110.34	118.6	314.2
	CDDH14001	6294.109	6850.427	141.644	-59.16	89.7492	189.4	197.9	314.2
	CDDH14002	6314.808	6900.143	140.75	-60.15	90.512	18	23.3	150.7
	CDDH14002	6314.808	6900.143	140.75	-60.15	90.512	18	23.3	150.7
	CDDH14002	6314.808	6900.143	140.75	-60.15	90.512	90.42	91.52	150.7
	CDDH14002	6314.808	6900.143	140.75	-60.15	90.512	91.52	93.7	150.7
	CDDH14002	6314.808	6900.143	140.75	-60.15	90.512	95.9	98.9	150.7
	CDDH14003	6342.984	6950.185	140.46	-59.38	89.984	0	0.35	135.1
	CDDH14003	6342.984	6950.185	140.46	-59.38	89.984	0	0.35	135.1
	CDDH14004	6392.661	7050.157	152.196	-60.06	89.942	32.5	44.92	115.8
	CDDH14004	6392.661	7050.157	152.196	-60.06	89.942	32.5	44.92	115.8
	CDDH14004	6392.661	7050.157	152.196	-60.06	89.942	66.4	72.4	115.8
	CDDH14005	6396.748	7100.153	153.153	-60.04	90.9128	5.9	18.29	120.8
	CDDH14005	6396.748	7100.153	153.153	-60.04	90.9128	5.9	18.29	120.8
	CDDH14005	6396.748	7100.153	153.153	-60.04	90.9128	30.95	49	120.8
1	CDDH14005	6396.748	7100.153	153.153	-60.04	90.9128	63.75	76.15	120.8
	CDDH14005	6396.748	7100.153	153.153	-60.04	90.9128	78.2	87.3	120.8
	CDDH14006		7150.266	153.731	-59.163	90.218	33.02	33.35	122.2
1	CDDH14006		7150.266		-59.163	90.218	33.02	33.35	122.2
	CDDH14006		7150.266		-59.163	90.218	46.38	53.51	122.2
1	CDDH14006	6403.49	7150.266	153.731	-59.163	90.218	67.55	77.8	122.2
1	CP8877	6491	7699	129	-90	0	0	4.3	21
	CP8877	6491	7699	129	-90	0	0	4.3	21
	CP8879	6472	7696	127	-90	0	0	3	3
	CP8880	6465	7677	127	-90	0	0	3	3
	CP8881	6457	7653	127	-90	0	0	6	6
	CP8883	6461	7627	127	-90	0	0	21	21
	CP8884	6455	7628	127	-90	0	0	3	3
	CP8885	6459	7612	127	-90	0	0	21	21
	CP8886	6464	7657	128	-90	0	0	6	6
	CP8887	6456	7591	127	-90	0	0	1.14	21
	CP8887	6456	7591	127	-90	0	0	1.14	21
	CP8888	6453	7572	127	-90	0	0	21	21
	CP8889	6454	7541	129	-90	0	6	18	24

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 18 of 21 34a Alexander St, Burnie Tasmania 7320 Page 79 of 93

CP_1409	hole_id	х	у	z	dip	azimuth	depth_from	depth_to	max_depth
1	CP8890	6462		129	-90	0	0	11.24	24
1	CP8890	6462	7512	129	-90	0	0	11.24	24
	CP8891	6476	7518	128	-90	0	0.06	24	24
	CP8892	6475	7541	129	-90	0	0.65	21.7	24
	CP8892	6475	7541	129	-90	0	0.65	21.7	24
	CP8893	6485	7460	128	-90	0	0	24	24
	CP8894	6474	7481	129	-90	0	0	24	24
	CP8895	6485	7502	128	-90	0	0	24	24
	CP8896	6469	7500	129	-90	0	0	24	24
	CP8897	6473	7678	128	-90	0	0	6	6
	CP8898	6481	7699	128	-90	0	0	0.92	3
	CPSTH1	6406.649	6997.925	159.249	-54.6789	110.2997	0	12	29.5
	CPSTH2	6404.769	7012.277	157.214	-53.2886	111.1647	0	29.5	29.5
	DH014	6660	7870	137.211	-60	274	258.5	268.8	469.7
	DH014	6660	7870	140	-60	274	258.5	268.8	469.7
	DH014	6660	7870	140	-60	274	272.2	291.1	469.7
	DH014	6660	7870	140	-60	274	307.5	349	469.7
	DH014	6660	7870	140	-60	274	355.1	356.3	469.7
	DH014	6558	8042	155.4	-55	274	111.66	145.4	193.2
	DH018	6558	8042	155.4	-55	270	111.66	145.4	193.2
1	DH018	6558	8042	155.4	-55	270	160.16	145.4	193.2
1	DH018 DH019	6552	8195	155.4	-60	270	20.62	77.61	193.2
1	DH019 DH019	6552	8195	161.5	-60	270	20.02	77.61	150
	DH019 DH019	6552	8195	161.5	-60	270	77.62	81.78	150
1					-60				
	DH019	6552	8195 6736	161.5	-60 -46	270	83.67	84.3	150
1	DH023	6252		284		270	0	32.35	90.5 90.5
	DH023	6252	6736	284	-46	270	0	32.35	
	DH023	6252	6736	284	-46	270	32.59	84.94	90.5
	DH039	6642.5	8187	143.75	-80	274	144.2	146.46	167
	DH039B	6642.5	8187	143.8	-80	274	150.63	153.89	320.3
	DH039B	6642.5	8187	143.8	-80	274	150.63 539.5	153.89	320.3
	DH042	6725	7860	145	-80	270.3		555.8	697.8
	DH042	6725	7860	145	-80	270.3	539.5	555.8	697.8
	DH048	6577	8341.5	195.1 111.749	-60	274	73.8	88.38	101.5
	GT001	6355.275	7940.683	-	-43.5	270	0	14.69	161.34
	ND049	6490.7	8019.9	179	-45	270	28.35	37.81	136
	ND049	6490.7	8019.9	179	-45	270	28.35	37.81	136
	ND049	6490.7	8019.9	179	-45	270	44.16	59.69	136
	ND049	6490.7	8019.9	179	-45	270	61.83	98	136
	ND066	6463.32	7928.74	154.71	-43	267.92	13.53	67.9	127
	ND066	6463.32	7928.74	154.71	-43	267.92	13.53	67.9	127
	ND067	6412.17	7990.06	154.96	-51	89.3	0	0.91	151.5
	ND067	6412.17	7990.06	154.96	-51	89.3	0	0.91	151.5
	ND067	6412.17	7990.06	154.96	-51	89.3	22.6	48.19	151.5
	ND067	6412.17	7990.06	154.96	-51	89.3	53.36	75.64	151.5
	ND067	6412.17	7990.06	154.96	-51	89.3	75.64	77.7	151.5
	ND068	6530.8	8089.56	146.52	-45	269.1	58.81	61.8	197
	ND068	6530.8	8089.56	146.52	-45	269.1	58.81	61.8	197
	ND068	6530.8	8089.56	146.52	-45	269.1	61.8	84.3	197
1	ND068	6530.8	8089.56	146.52	-45	269.1	87.1	94.05	197

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 19 of 21

CP 1409	hole_id	x	v	z	dip	azimuth	depth_from	denth to	max_depth
_	ND068	6530.8	8 089.56	146.52	-45	269.1	94.05	98.09	197
	ND068	6530.8	8089.56	146.52	-45	269.1	131.8	133.8	197
	ND069	6539.71	8141.51	146.47	-43	269.5	50.6	68.8	137
	ND069	6539.71	8141.51	146.47	-47	269.5	50.6	68.8	139
	ND069		8141.51	146.47	-47	269.5	77.57	78.03	
		6539.71			-47				139
	ND069 ND070	6539.71 6514.6	8141.51	146.47	-47 -45	269.5 88.22	78.03	78.09 45.7	139 163
-			8239.37	153.19			4		
	ND070	6514.6	8239.37	153.19	-45	88.22	4	45.7	163
-	ND070	6514.6	8239.37	153.19	-45	88.22	46.34	52.31	163
-	ND074	6510.74	8297.89	157	-45	87.91	0	13.8	148.5
	ND074	6510.74	8297.89	157	-45	87.91	0	13.8	148.5
	ND078	6440.3	8141.7	139.2	-45	91.98	29.29	61.51	151
	ND078	6440.3	8141.7	139.2	-45	91.98	29.29	61.51	151
-	ND078	6440.3	8141.7	139.2	-45	91.98	61.55	61.57	151
	ND078	6440.3	8141.7	139.2	-45	91.98	69.4	108.83	151
	ND078	6440.3	8141.7	139.2	-45	91.98	115.8	138.7	151
	ND079	6477.7	8087.7	125.8	-37	270.35	0	12.3	91.6
	ND079	6477.7	8087.7	125.8	-37	270.35	0	12.3	91.6
-	ND079	6477.7	8087.7	125.8	-37	270.35	21.6	29.37	91.6
1	ND079	6477.7	8087.7	125.8	-37	270.35	40.1	51.3	91.6
1	ND093	6618.4	8348.8	163.9	-38	270	99.96	106.92	200
1	ND095	6519.9	8440.4	168.8	-40	90	79.27	85.9	177.5
1	NP026	6444	8040	203.1	-90	0	54	75	75
1	NP027	6425	7990	210.2	-90	0	9	32.92	90
1	NP027	6425	7990	210.2	-90	0	9	32.92	90
1	NP028	6463	7993	185.4	-90	0	0	12	81
1	NP028	6463	7993	185.4	-90	0	0	12	81
1	NP030	6520	8189	159.7	-90	0	0	39	39
1	NP031	6424	7894	167.8	-90	0	0	36	36
1	NP032	6487	7990	166.2	-60	270	0	12	60
1	NP032	6487	7990	166.2	-60	270	0	12	60
1	NP032	6487	7990	166.2	-60	270	30	51.94	60
1	NP033	6451	7891	150.8	-90	0	0	27	27
1	SL001	6404	7989.9	215.4	-60	270	0	24	24
1	SL002	6400	7940	199	-60	270	4	15	70
	SL003	6381.7	8029.7	183.1	-60	90	22.23	39.09	70
	SL004	6353.4	7893.7	174.5	-60	270	9	43	43
	SL005	6378.5	7888.1	172.9	-60	90	16	65	65
	SL006	6450.2	7891.3	151.6	-60	270	0	1.98	30
	SL006	6450.2	7891.3	151.6	-60	270	0	1.98	30
	SL000	6466.2	7947.5	166	-40	270	23	34	34
	SL007 SL009	6549.7	7939.8	100		270	50	75	163
	SL009	6549.7	7939.8	110	0	270	50	75	163
	SL009	6549.7	7939.8	110	0	270	75	92.91	163
	SL009	6549.7	7939.8	110	0	270	101.5	103.53	163
	SL009 SL009	6549.7	7939.8	110	0	270	101.5	103.53	163
					0				
	SL010	6523.1	7890.8	107.1	0	270	29	43.78	124
	SL010	6523.1	7890.8	107.1		270	29	43.78	124
	SL010	6523.1	7890.8	107.1	0	270	43.78	44	124
1	SL010	6523.1	7890.8	107.1	0	270	44	59	124

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 20 of 21

CP_1409	hole_id	x	у	z	dip	azimuth	depth_from	depth_to	max_depth
1	SL010	6523.1	7890.8	107.1	0	270	89	95	124
1	SL010	6523.1	7890.8	107.1	0	270	95	119	124
1	SL012	6508.9	8090.6	167.7	-20	270	18	39	71
1	SL012	6508.9	8090.6	167.7	-20	270	18	39	71
1	SL012	6508.9	8090.6	167.7	-20	270	39	51	71
1	SL012	6508.9	8090.6	167.7	-20	270	51.58	51.68	71
1	SL013	6505.8	7990.1	161.6	-60	270	0	5	78
1	SL013	6505.8	7990.1	161.6	-60	270	0	5	78
1	SLP07001	6438.15	7823.129	110.06	-72	73	0	1.27	18
1	SLP07002	6427.139	7816.89	111.246	-70	77	0	2.63	18
1	SLP07002	6427.139	7816.89	111.246	-70	77	0	2.63	18
1	SLP07002	6427.139	7816.89	111.246	-70	77	2.63	3.59	18
1	SLP07004	6402.686	7810.448	111.26	-73	94	0	18	18
1	SLP07005	6383.298	7807.473	111.839	-73	100	4	16.18	18

Centre Pit Combined Drill-hole Intersects as at 31 Dec 2014 21 of 21

NP_1103		x	У	z	dip	azimuth	depth_from		
	DH001	6680	9402	328	-41	102	29.9	29.91	203.6
	DH001	6680	9402	328	-41	102	42.01	77.79	203.6
	DH001	6680	9402	328	-41	102	77.79	130.48	203.6
	DH002	6852	9550	374	-45	295	94.5	151.78	263
	DH002	6852	9550	374	-45	295	151.78	219.26	263
	DH017	6644	8528	196	-67	276	1.2	18.3	65.5
	DH017	6644	8528	196	-67	276	36.6	61.6	65.5
	DH025	6708	8878	257.5	-65	270	30.76	75.6	228.3
	DH025	6708	8878	257.5	-65	270	75.6	102.4	228.3
	DH026	6777	9229	358.1	-64	270	21.3	48.1	181.4
	DH026	6777	9229	358.1	-64	270	65.5	79.9	181.4
	DH026	6777	9229	358.1	-64	270	91.4	170.7	181.4
	DH027	6777	9229	358.1	-51	270			
	DH036	6868.5	9353	348.4	-79	300	231.6	240.79	439.2
	DH036	6868.5	9353	348.4	-79	300	258.5	326.7	439.2
	DH036	6868.5	9353	348.4	-79	300	326.7	408.4	439.2
	DH037	6892.5	9460	336	-78	294	287.1	373.68	546.8
	DH037	6892.5	9460	336	-78	294	375.09	545.3	546.8
	DH041	6955	9505	323					738.2
	DH043	6888	9990	354.5	-45	275	116.27	121.81	186.5
	DH043	6888	9990	354.5	-45	275	158.5	164	
	DH049	6666.5	9020	309	-50	274	46.8	52.4	88.4
	DH049	6666.5	9020	309	-50	274	69.5	75.8	88.4
	DH050	6602.5	8913.5	296	-48	94	44.18	45.7	209.1
	DH050	6602.5	8913.5	296	-48	94	46.81	97.8	209.1
	DH050	6602.5	8913.5	296	-48	94	106.7	155.4	209.1
	DH051	6670	9242	335.3	-55	94	3.7	119.74	234.7
	DH051	6670	9242	335.3	-55	94	119.74	198.1	234.7
	DH052	6825	9305	344.5	-57	286	105.2	122.2	326.7
	DH052	6825	9305	344.5	-57	286	132.9	153.84	326.7
	DH052	6825	9305	344.5	-57	286	161.67	216.4	326.7
	DH052	6825	9305	344.5	-57	286	216.4	242.6	326.7
	DH052	6825	9305	344.5	-57	286	285.6	294.7	326.7
	DH053	6854	9653.5	366	-67	286	118.6	133.66	323.7
	DH053	6854	9653.5	366	-67	286	146.34	190.31	323.7
	DH053	6854	9653.5	366	-67	286	190.31	301.8	323.7
	DH053	6854	9653.5	366	-67	286	301.8	323.7	323.7
	N88100	6640	8752	240	-90	0	6	30	30
	N88101	6657	8752	240	-90	0		12	30
	N88101	6657	8752	240	-30	0	_	30	30
	N88102	6675	8752	240	-30	0	0	24	24
	N88103	6697	8752	241	-30	0		24	24
	N88104	6676	8918	235	-90	0	0	30	30
	N88105	6618	8752	235	-30	0			18
	ND001	6865.5	9740	363.46	-45	270	116	127.1	326
	ND001	6865.5	9740	363.46	-40 -45	270		280.7	326
	ND001	6865.5	9740	363.46	-40 -45	270	269.4	280.7 317.6	326
	ND001	6910.5	9740	350.87	-40 -45	270 270	305.3	317.6 181.49	
	ND002	6910.5		350.87					380
	ND002	6910.5	9542.5 9542.5	350.87	-45 -45	270 270	181.79 250.7	198.48 273.9	380 380
NP_1103		6310.5	3042.0 y	300.87 Z	-40 dip		depth_from		

North Pit Drill-hole Intersects as at 31 Dec 2013 1 of 11

VP_1103	hole_id	x	У	z	dip	azimuth	depth_from	depth_to	max_dept
	ND002	6910.5	9542.5	350.87	-45	270	289	300.5	38
	ND002	6910.5	9542.5	350.87	-45	270	311.4	338.8	38
	ND003	6553.5	9134	273	-45	90	199.1	245.6	30
	ND003	6553.5	9134	273	-45	90	253.9	285.5	30
	ND003	6553.5	9134	273	-45	90	288.2	295.6	30
	ND004	6817	9291	345.05	-45	270	50.1	79.3	175.
	ND004	6817	9291	345.05	-45	270	86.3	124.86	175.
	ND004	6817	9291	345.05	-45	270	124.86	175.9	175.
	ND034	6789.9	9490.5	347.6	-45	270	0	51.8	8
	ND035	6758.4	9440	347.5	-45	270	0	38.2	8
	ND035	6758.4	9440	347.5	-45	270	38.2	76.5	8
	ND036	6759.4	9440.8	347.5	-45	90	0	13.5	
	ND036	6759.4	9440.8	347.5	-45	90	21.7	27.1	
	ND036	6759.4	9440.8	347.5	-45		57.2	65	
	ND037	6770.9	9391.1	347.3	-45	270	8.4	50.4	102
	ND037	6770.9	9391.1	347.3	-45	270	50.4	85.4	102
	ND037	6770.9	9391.1	347.3	-45	270	85.4	97.7	102
	ND038	6772.5	9312	349.7	-45	270	4.4	18.2	127
	ND038	6772.5	9312	349.7	-45	270	23	53.6	127
	ND038	6772.5	9312	349.7	-45	270	56.8	94.8	127
	ND038	6772.5	9312	349.7	-45	270	115.25	127.5	127
	ND039	6723.2	9339.6	347.7	-45	270	6.4	72.78	78
	ND040	6744	9640	357.6	-45	90	57.5	81.5	10
	ND040	6820	9540	347	-45	241	19.7	72.4	108
	ND042	6765.4	9538.5	346.5	-45	90	0	64.7	75
	ND042	6772.4	9194.7	336.3	-40	270	3	30.5	14
	ND043	6772.4	9194.7	336.3	-40	270	45.4	66.4	14
	ND043	6772.4	9194.7	336.3	-40	270	40.4	131.8	14
	ND043	6772.4	9194.7	336.3	-40	270	131.8	147	
			9250.3	352.6	-40				14 112
	ND044	6729.1	9250.3			270	14.5	109.09	
	ND044	6729.1		352.6	-50	270	109.09	111.6	112
	ND044	6729.1	9250.3	352.6	-50 -55	270	111.6	112.7	112
	ND045	6658	9005.8	308.6		270	43.17	51.83	69
	ND045	6658	9005.8	308.6	-55	270	59.13	65.88	69
	ND046	6663.3	9141.3	322.7	-55	270	1.5	43.3	Ę
	ND046	6663.3	9141.3	322.7	-55	270	48.3	56	Ę
	ND047	6765.4	9540.9	348	-50	270	0	14.7	4
	ND048	6791.6	9489.9	337.9	-45		0	30.2	į
	ND050	6834.4	9491.2	336.6	-45			98.42	145
	ND050	6834.4	9491.2	336.6	-45		98.42	98.43	145
	ND050	6834.4	9491.2	336.6	-45		98.43	129.3	145
	ND051	6810.3	9389.7	328.7	-45			101.3	159
	ND051	6810.3	9389.7	328.7	-45			125	
	ND051	6810.3	9389.7	328.7	-45			151	159
	ND052	6759.9	9338.7	321.5	-45			33.84	1
	ND052	6759.9	9338.7	321.5	-45		33.89	71.5	1
	ND053	6756.2	9129.9	292.7	-45			51	72
	ND053	6756.2	9129.9	292.7	-45	270	72.5	72.7	72
	ND054	6716.7	9096.8	287.7					

North Pit Drill-hole Intersects as at 31 Dec 2013 2 of 11

NP_1103	hole_id	x	у	z	dip	azimuth	depth_from	depth_to	max_depth
	ND055	6608.6	9090.5	300.7	-40	90		34	137
	ND055	6608.6	9090.5	300.7	-40	90	50	137	137
	ND056	6831.3	9189.4	305.2	-45	270	104	128	210.5
	ND056	6831.3	9189.4	305.2	-45	270		165.7	210.5
	ND056	6831.3	9189.4	305.2	-45	270		198.6	210.5
	ND057	6875.3	9390.1	327.8	-45	270	134.2	149	149
	ND058	6591.9	8741.6	236.6	-45	90	90.6	116	153.5
	ND058	6591.9	8741.6	236.6	-45	90		144.2	153.5
	ND059	6704.5	9590.45	341.54	-60	90		55	262.3
	ND059	6704.5	9590.45	341.54	-60	90	84.49	103.26	262.3
	ND059	6704.5	9590.45	341.54	-60	90	103.26	262.3	262.3
	ND060	6677.7	8949.8	270.2	-65	270	12.5	43.9	110
	ND060	6677.7	8949.8	270.2	-65	270		110	110
	ND061	6713.8	8831.8	258.2	-50	270	45	85.5	110
	ND061	6713.8	8831.8	258.2	-50	270	99	103.3	110
	ND062	6566.3	9041.5	286.4	-40	90	76.6	83.6	165
	ND062	6566.3	9041.5	286.4	-40	90		165	165
	ND063	6690.3	9639.2	344.3	-45	90		213.8	228.5
	ND064	6657.7	9439.9	310.6	-45	90		110.3	240
	ND064	6657.7	9439.9	310.6	-45	90	110.3	161.69	240
	ND064	6657.7	9439.9	310.6	-45	90	161.69	217.2	240
	ND065	6619.3	8646	230.7	-55	90	21.5	72.4	110
	ND071	6723.38	9091.14	199.24	-48	267.53	0	24.3	103
	ND071	6723.38	9091.14	199.24	-48	267.53	73	79	103
	ND072	6724.22	9348.31	215.62	-42	91.18		22.21	103
	ND072	6724.22	9348.31	215.62	-42	91.18	22.21	93.5	103
	ND073	6748.41	9482.47	219.36	-45	82.56		32.37	130
	ND073	6748.41	9482.47	219.36	-45	82.56	32.37	111.2	130
	ND076	6527.6	8590.7	178.4	-37	89.6	137.1	173.1	173.1
	ND077	6589	8504.1	202.7	-45	90.7			74.2
	ND080	6590	9739.7	316.9	-56.06	92.32	27.4	77.36	530
	ND080	6590	9739.7	316.9	-56.06	92.32	77.46	143.6	060
	ND080	6590	9739.7	316.9	-56.06	92.32	249.8	264.8	530
	ND080	6590	9739.7	316.9	-56.06	92.32	264.8	296.49	530
	ND080	6590	9739.7	316.9	-56.06	92.32	296.49	297.32	530
	ND080	6590	9739.7	316.9	-56.06	92.32		422	530
	ND080	6590	9739.7	316.9	-56.06	92.32	422	466.1	530
	ND081	6606.1	9655.5	308.6	-54	89.1	115.3	138.5	516
	ND081	6606.1	9655.5	308.6	-54	89.1	192.2	283.6	516
	ND081	6606.1	9655.5	308.6	-54	89.1	283.6	327.7	516
	ND081	6606.1	9655.5						516
	ND082	6886.5	9189.9		-57	271.7			407.7
	ND082	6886.5	9189.9			271.7		254.8	407.7
	ND082	6886.5	9189.9	287.3	-57	271.7		276.6	407.7
	ND082	6886.5	9189.9	287.3	-57	271.7		327.3	407.7
	ND083	6584.2	9352.3	279.5	-60	92.1		316.9	525.7
	ND083	6584.2	9352.3	279.5	-60	92.1			525.7
	ND083	6584.2	9352.3	279.5	-60	92.1	331.6	356.9	525.7
	ND083	6584.2	9352.3	279.5	-60	92.1	356.9	472.4	525.7

North Pit Drill-hole Intersects as at 31 Dec 2013 3of 11

NP_1103	hole_id	x	У	z	dip		depth_from		max_depth
	ND085	6559.2	9529.9	292.8	-49	89.3	141.38	148.21	550
	ND085	6559.2	9529.9	292.8	-49	89.3	156.3	170.9	550
	ND085	6559.2	9529.9	292.8	-49	89.3	232.1	340.42	550
	ND085	6559.2	9529.9	292.8	-49	89.3	340.52	432.2	550
	ND086	6596.2	9794.8	323.3	-55	77.65	67.8	88.7	433.1
	ND086	6596.2	9794.8	323.3	-55	77.65	110.7	126.4	433.1
	ND086	6596.2	9794.8	323.3	-55	77.65		305.03	433.1
	ND086	6596.2	9794.8	323.3	-55	77.65		316.5	433.1
	ND086	6596.2	9794.8	323.3	-55	77.65		377.3	433.1
	ND087	6702.5	8992.2	198.2	-51	135.3			350
	ND088	6698.4	8872.4	195.85	-51	135.3			271.6
	ND089	6612.1	8698.6	230.5	-51	135.3	114.3	142.8	340.1
	ND094	6750.5	8944.6	207.5	-40	270	65	94	210
	ND094	6750.5	8944.6	207.5	-40	270	115.8		210
	ND096	6781.4	9090.7	193.5	-60	270	70.6	98	185.1
	ND096	6781.4	9090.7	193.5	-60	270	134.8	139.04	185.1
	ND096	6781.4	9090.7	193.5	-60	270	177	181.6	185.1
	ND097	6753.5	8889.9	213.8	-65	270	92.9	132.2	257.5
	ND097	6753.5	8889.9	213.8	-65	270	139.9	183	257.5
	ND097	6753.5	8889.9	213.8	-65	270	202	213.3	257.5
	ND098	6743.3	8839.8	215.0	-58	270	80	107.8	207.3
	ND098	6743.3	8839.8	216.8	-58	270	118.2	132.9	205.7
	ND099	6714.2	8739.9	225.5	-50	270	63.6	81.3	137
	ND099	6714.2	8739.9	225.5	-65	270	86.4	111.3	137
	ND100	6583.9	8639.6	220.0	-65	270	175.8	205.1	214.7
	ND101	6543.3	8521.2	198.1	-65	71	145	184.4	214.7
	ND101	6543.3	8521.2	198.1	-43	71	140	197.9	235
	ND102	6793.5	9074	195.1	-43	71	107.3	137.3	79
	ND102	6640.5	8590.2	210.8	-43	90	0	4	100
					-50	90		4	100
	ND103	6640.5	8590.2	210.8			4		
	ND104	6644.89	8675.2	212	-60	90	0	68	87
	ND104	6644.89	8675.2	212	-60	90	68	74	87
	ND105	6693.7	9798.59	339.89	-60	90			100
	ND106	6790.1	9798.09	352.5	-60	90			100
	ND107	6758	9844.4	347.6	-60	90			94
	ND108	6645.5	9800.4	330.29	-60	95	10	16	60
	ND108	6645.5	9800.4	330.29	-60	95	58	60	60
	ND109	6643.89	9799.9	330.2	-60	178	16	26	78
	ND109	6643.89			-60	178			
	ND110	6652	9750.2	330.6		270	44	78	
	ND111	6659.7			-60	5		100	
	ND112	6776.6			-60	5			100
	ND113	6766.5		348.2	-60	5			100
	ND200101	6947.4		341.89	-51.29	267.44		201.2	370
	ND200101	6947.4		341.89	-51.29	267.44			
	ND200101	6947.4	9789.62	341.89	-51.29	267.44	250.8	264.9	
	ND200101	6947.4	9789.62	341.89	-51.29	267.44	273.9	300.1	370
	ND200102		9390.033	119.06			0	9.6	162.4
	ND200102	6719.18			-59.042				162.4
NP 1103	hole_id	x	у	z	dip	azimuth	depth_from	depth to	max depth

North Pit Drill-hole Intersects as at 31 Dec 2013 4of 11

NP_1103	hole_id	x	У	z	dip		depth_from		max_depth
	ND200102	6719.18	9390.033	119.06	-59.042	269.122	78.4	87.9	162.4
	ND200102	6719.18	9390.033	119.06	-59.042	269.122	97.9	98.29	162.4
	ND200103	6720.85	9390.135	119,19	-54.912	86.295	0	10.3	185
	ND200103	6720.85	9390.135	119, 19	-54.912	86.295	10.3	53.8	185
	ND200103	6720.85	9390.135	119, 19	-54.912	86.295	53.8	172.4	185
	ND200104	6903.31	9836.85	341.88	-55.23	270.04	198	243.2	296.2
	ND200104	6903.31	9836.85	341.88	-55.23	270.04	243.2	267.7	296.2
	ND200111	6979.68	9739.838	341.88	-47.21	271.33	213	304.4	380.1
	ND200111	6979.68	9739.838	341.88	-47.21	271.33	304.4	342	380.1
	ND200111	6979.68	9739.838	341.88	-47.21	271.33	342	352.3	380.1
	NDDH0501	6822.06	9189.93	184.96	-69	268.83	102.9	115.8	483.9
	NDDH0501	6822.06	9189.93	184.96	-69	268.83	115.8	142	483.9
	NDDH0501	6822.06	9189.93	184.96	-69	268.83	158.7	181.5	483.9
	NDDH0501	6822.06	9189.93	184.96	-69	268.83	191.25	206.4	483.9
	NDDH0501	6822.06	9189.93	184.96	-69	268.83	276.8	324	483.9
	NDDH0502	6821.82	9192.68	184.82	-50.18	94.27			358.9
	NDDH0503	6449.18	9540.12	260.48	-59.25	90.91	466.52	490	783.1
	NDDH0503	6449.18	9540.12	260.48	-59.25	90.91	541.24	629.09	783.1
	NDDH0503	6449.18	9540.12	260.48	-59.25	90.91	629.09	699.55	783.1
	NDDH0504	6657.56	9388.61	117.62	-57.05	89.13	0	6.7	333.95
	NDDH0504	6657.56	9388.61	117.62	-57.05	89.13	129.25	148	333.95
	NDDH0504	6657.56	9388.61	117.62	-57.05	89.13	148	315.1	333.95
	NDDH0505	6671.36	9485.02	111.99	-53.06	91.43	14.61	16.1	314.8
	NDDH0505	6671.36	9485.02	111.99	-53.06	91.43		173.13	314.8
	NDDH0505	6671.36	9485.02	111.99	-53.06	91.43	173.13	259.75	314.8
	NDDH0506	6642.49	9292.96	126.69	-59.45	92.84	64.5	100.1	351.35
	NDDH0506	6642.49	9292.96	126.69	-59.45	92.84	146.7	170	351.35
	NDDH0506	6642.49	9292.96	126.69	-59.45	92.84	170	204	351.35
	NDDH0506	6642.49	9292.96	126.69	-59.45	92.84	204	244	351.35
	NDDH0506	6642.49	9292.96	126.69	-59.45	92.84	244	268	351.35
	NDDH0506	6642.49	9292.96	126.69	-59.45	92.84	268	337.1	351.35
	NDDH0506	6642.49	9292.96	126.69	-59.45	92.84	337.1	349.4	351.35
	NDDH0507	6542.32	9734.73	241.28	-54.84	94.71	120	125.1	560.5
	NDDH0507	6542.32	9734.73	241.28	-54.84	94.71	178.92	186.2	560.5
	NDDH0507	6542.32	9734.73	241.28	-54.84	94.71	302.45	476.6	560.5
	NDDH0507	6542.32	9734.73	241.28	-54.84	94.71	484.8	499.7	560.5
	NDDH0507	6542.32	9734.73	241.28	-54.84	94.71	499.7	507.7	560.5
	NDDH0508	6455.2	9644.22	254.94	-55.45	89.55	316	348.1	477.4
	NDDH0508	6455.2	9644.22	254.94	-55.45	89.55	356	378	477.4
	NDDH0508	6455.2	9644.22	254.94	-55.45				
	NDDH0601	6485.09	9867.3	295.68	-48.2	74.57		304.3	
	NDDH0601	6485.09	9867.3	295.68	-48.2	74.57		528	
	NDDH0601	6485.09	9867.3	295.68	-48.2	74.57	528	544	
	NDDH0602	7140.54	9954.83	352.08	-45.37	267.48			
	NDDH0602	7140.54	9954.83	352.08	-45.37	267.48			
	NDDH0602	7140.54	9954.83	352.08	-45.37	267.48		553.2	750.1
	NDDH0605	6400.55	9346.885	262.85	-44.93		000.11	000.2	237.3
NP_1103	hole_id	x	у	z	dip		depth_from	depth to	

North Pit Drill-hole Intersects as at 31 Dec 2013 5 of 11

NP_1103	hole_id	X	У	z	dip		depth_from		max_depth
	NDDH0606	6615.67	9054.26	201.85	-54.06	89.134	47.6	102.14	285.5
	NDDH0606	6615.67	9054.26	201.85	-54.06	89.134	158	275.5	285.5
	NDDH0607	6606.54	8991.057	206.8	-56.25	88.54	29.9	55.4	317.5
	NDDH0607	6606.54	8991.057	206.8	-56.25	88.54	91.9	113	317.5
	NDDH0607	6606.54	8991.057	206.8	-56.25	88.54	121.55	136.7	317.5
	NDDH0607	6606.54	8991.057	206.8	-56.25	88.54	147.4	151.6	317.5
	NDDH0607	6606.54	8991.057	206.8	-56.25	88.54	248.17	261.54	317.5
	NDDH0607	6606.54	8991.057	206.8	-56.25	88.54	262	317.5	317.5
	NDDH0608	6666.98	9641.15	127.82	-55.11	270.91	0	6.05	107.3
	NDDH0608	6666.98	9641.15	127.82	-55.11	270.91	11.2	20	107.3
	NDDH0608	6666.98	9641.15	127.82	-55.11	270.91	36	58	107.3
	NDDH0609	6670.32	9591.288	122.01	-55.19	273.94	13.2	30.25	201.5
	NDDH0609	6670.32	9591.288	122.01	-55.19	273.94	56	63	201.5
	NDDH0610	6672.04	9586.944	122.08	-54.81	230.42	2.9	6.4	130.5
	NDDH0610	6672.04	9586.944	122.08	-54.81	230.42	17.3	29	130.5
	NDDH0610	6672.04	9586.944	122.08	-54.81	230.42	84.7	88	130.5
	NDDH0611	6698.91	9464.161	110.78	-55.81	296.06	36	39.25	181.5
	NDDH0611	6698.91	9464.161	110.78	-55.81	296.06	71.5	85	181.5
	NDDH0611	6698.91	9464.161	110.78	-55.81	296.06	121.9	124.1	181.5
	NDDH0612	6697.27	9461.92	110.77	-55.51	260.62	18	21	146.6
	NDDH0612	6697.27	9461.92	110.77	-55.51	260.62	61.9	66.8	146.6
	NDDH0612	6697.27	9461.92	110.77	-55.51	260.62	93.5	97.5	146.6
	NDDH0612	6697.27	9461.92	110.77	-55.51	260.62	108	111.4	146.6
	NDDH0612	6697.27	9461.92	110.77	-55.51	260.62	122	127.65	146.6
	NDDH0613	6670.64	9648.64	128.38	-53.09	92.11	59.85	134.15	315.5
	NDDH0613	6670.64	9648.64	128.38	-53.09	92.11	134.15	159	315.5
	NDDH0613	6670.64	9648.64	128.38	-53.09	92.11	159	280.7	315.5
	NDDH0613	6670.64	9648.64	128.38	-53.09	92.11	280.7	294.3	315.5
	NDDH0614	6810.81	8995.886	207.94	-52.63	250.37	127.1	191.6	276.3
	NDDH0614	6810.81	8995.886	207.94	-52.63	250.37	191.6	197.1	276.3
	NDDH0614	6810.81	8995.886	207.94	-52.63	250.37	222	275	276.3
	NDDH0615	6840.69	9083.07	197.31	-63.54	313.2	147.3	158	263.6
	NDDH0615	6840.69	9083.07	197.31	-63.54	313.2	165	196.1	263.6
	NDDH0615	6840.69	9083.07	197.31	-63.54	313.2	204.6	230.25	263.6
	NDDH0615	6840.69	9083.07	197.31	-63.54	313.2	234.6	239.65	263.6
	NDDH0616	6842.9	9081.66	197.6	-61.71	272.79	137	244.4	287.7
	NDDH07022	6767.49	8840.53	215.75	-60	264	112	158.1	243.2
	NDDH07023	6810	8990	203	-53.23	273.46	120	178	204.2
	NDDH08035	6802	9533.603	70.817	-90	0	0	25	25
	NDDH08036	6780.4	9328.3	76.429	-60	346	0	47.2	47.2
	NDDH08037	6796.75	9466.526	65.583	-60	350	0	10	10
	NDDH08038	6796.75	9466.526	65.583	-60	13	0	41	4
NP 1103	hole id	x	y	z	dip	azimuth	depth_from	depth to	max depth

North Pit Drill-hole Intersects as at 31 Dec 2013 6 of 11

NP_1103	hole_id	I	-	z	dip	azimuth	depth_from	depth to	max dept
<u> </u>	NDDH03054	6703	10143.68	324.17	-43.275	35.2	64	134.3	163
	NDDH03055	6704.64	10145.00	324.93	-43.215	87.58	91.86	126.63	143
	NDDH09056	6712.03	10041.17	320.24	-59.3	97.34	89.8	110.6	118
	NDDH09064	6630.29	3330.037	297.59	-50	92.24	219	231	349
	NDDH09064	6630.29	9990.097	297.59	-50	92.24	231	234.6	349
	NDDH09064	6630.29	9990.097	297.59	-50	92.24	275	295	349
	NDDH03065	6945.09	9939.886	322.07	-50.67	270.57	225	228	323
	NDDH09065	6945.09	9939.886	322.07	-50.67	270.57	257.25	298.25	329
	NDDH10066	6940.8	10040.79	322.72	-52.7	264.3	225	253.17	368
	NDDH10067	6621.28	10139.98	306.09					296
	NDDH10068	6686.57	10089.87	290.08	-49.68	88.55	84.5	130	206
	NDDH10068	6686.57	10083.87	290.08	-49.68	88.55	148.7	163.16	206
	NDDH10063	6707.54	9939,829	275.31	-50.63	93.55	61.55	80.55	177
	NDDH10063	6707.54	9939.829	275.31	-50.63	93,55	129.25	143	177
	NDDH10070	6894.27	10036.89	306.16	-49.75	295.18	148.9	180.7	235
	NDDH10070	6894.27	10036.89	306.16	-49.75	295.18	210.3	234.6	295
	NDDH10070	6894.27	10036.89	306.16	-49.75	295.18	234.65	244	295
	NP005	6785	9492	375.65	-40.10	0	0	39.5	39
	NP005	6723.6	3432 3340.6	360.5	-50	270	12	33.5	
	NP008	6747.2	3340.8 9443.9	366.5	-60	270	0	45	
	NP011	6758.8	9340.2	367.3	-60	270	0	18	
	NP011	6758.8	9340.2	367.3	-60	270	24	55.34	
	NP011	6758.8	9340.2	367.3	-60	270	55.34	65	
	NP012	6772.4	9587.2	367.9	-60	90	18	39	
	NP013	6699.3	9189.8	334.5	-60	270	0	48	
	NP014	6780	9340	369.1	-60	270	39	57	
	NP015	6799	9534	373.7	-60	270	21	39	:
	NP016	6768	3441	375.2	-30	0	33	63	
	NP016	6768	9441	375.2	-90	0	69	72	
	NP017	6743	9240	343.3	-60	90	3	33	
	NP017	6743	3240	343.3	-60	30	50	69	
	NP018	6670	9090	314.7	-60	270	0	43	
	NP021	6675	9091	314.7	-90	0	0	23	
	NP023	6751	9603	358.9	-90	0	0	12	
	NP024	6707	9243	341.1	-90	0	6	33	
	NP025	6690	9139	320.6	-90	0	0	36	
	NP8701	6630	3140	255.1	-30	0	0	27	
	NP8703	6778	3515	283.4	-30	0	0	24	
						-			
	NP8704	6790	9480	283	-90	0	0	21	
	NP8705	6763	9463	281.5	-90	0	0.22	6.9	
	NP8705	6769	9463	281.5	-90	0	9	36	
	NP8706	6687	9091	254.4	-90	0	0	36	
	NP8707	6715	9288	256.7	-90	0	0	36	
	NP8708	6710	9239	255.5	-90	0	0	36	
	NP8709	6737	9157	255	-90	0	0	33	
	NP8710	6674.6	8788.7	235.8	-90	0	0	21	
	NP8711	6673.8	9281.1	269.1	-90	0	0	42.77	
	NP8712	6814.5	9489	282	-90	0	3	27	
	NP8713	6795	9490	282	-90	0	0	42	
	NP8714	6780	9490	282	-90	0	0	6	
	NP8715	6764	9490	282	-90	0	6	42	
	NP8716	6813	3540	282	-90	0	0	33	
	NP8717	6797	3540	282	-30	0	0	33	
		6641				0			
	NP8718		9253	287	-90			3	
	NP8719	6644	9275	287	-30	0	0	21	

North Pit Drill-hole Intersects as at 31 Dec 2013 7 of 11

NP_1103	hole_id	I	,	z	dip	azimuth	depth_from	depth_to	max_depth
	NP8721	6625	9291	287	-90	0	0	19.59	2
	NP8722	6630	9275	287	-90	0	0	21	2
	NP8726	6615	9276	287	-90	0	3.34	12	1
	NP8727	6750	9490	282	-30	0	27.05	36	3
	NP8728	6810	9540	282	-90	0	0	33	3
	NP8729	6764.5	9540	282	-90	0	9	33	3
	NP8730	6810	9515	282	-90	0	0	42	4
	NP8731	6795	9515	282	-90	0	0	36	3
	NP8732	6807	9566	282	-90	0	3	33	3
	NP8733	6760	9515	282	-90	0	13.71	42	4
	NP8735	6690	9051	254	-90	0	0	33	3
	NP8736	6690	9065	254	-90	0	0	21	1
	NP8737	6702.5	3065	254	-30	0	5.13	21	1
	NP8738	6690	3015	255	-30	0	24	33	3
	NP8739	6677.5	3065	255	-30	0	0	21	
	NP8740	6665	3066	255	-90	0	0	9	
	NP8741	6675	9057.7	255	-90	0	0	33	3
	NP8742	6673.6	9090	255	-30	0	0	18	1
	NP8743	6667.4	9091	255	-30	0	0	21	
	NP8744	6677.4	9116	255	-30	0	0	3	
	NP8745	6689.2	9115.4	255	-30	0	0	3	
	NP8746	6679.3	9140	255	-30	0	0	9	
	NP8801	6678	9139	255	-30	0	0	21	
	NP8802	6691	9142	255	-90	0	0	21	
	NP8803	6701	9115	255	-90	0	0.47	16.11	;
	NP8806	6688	8915	254	-30	0	0	21	
	NP8808	6674	8915	253	-30	0	0	12	
	NP8811	6720	9166	255	-30	0	11.05	12	
	NP8813	6699	9167	255	-30	0	0	21	
	NP8815	6720	9192	255	-30	0	0	3	
	NP8817	6706	9213	255	-90	0	0	21	
	NP8818	6732	9240	255	-90	0	0	3	
	NP8819	6732	9262	255	-90	0	0	21	
	NP8822	6789	9438	271	-90	0	0	33	:
	NP8823	6768	9437	271	-90	0	1.24	24	;
NP_1103	hole_id	I		z	dip	azimuth	depth_from	depth_to	mar_dept

North Pit Drill-hole Intersects as at 31 Dec 2013 8 of 11

	1460020	0100	3431	611	-50		1.44	24	
NP_1103	hole_id	I	,	z	dip	azimuth	depth_from	depth_to	max_depth
	NP8823	6768	9437	271	-30	0	24	33	33
	NP8826	6766	9263	266	-90	0	18	33	33
	NP8827	6766	9290	266	-90	0	0	21	21
	NP8828	6761	9315	267	-90	0	0	11.9	33
	NP8828	6761	9315	267	-90	0	15	33	33
	NP8829	6774	9315	267	-90	0	15	27	27
	NP8835	6636	9240	276.1	-90	0	7.6	11.58	21
	NP8836	6660	9238	275.5	-90	0	0	3.63	21
	NP8836	6660	9238	275.5	-90	0	19.95	21	21
	NP8837	6646	9214	278.5	-90	0	5.88	21	21
	NP8838	6639	9183	280.7	-30	0	0	27	27
	NP8839	6632	9167	282.2	-30	0	0	27	27
	NP8840	6634	9144	281	-30	0	0	27	27
	NP8841	6623	9110	281.8	-30	0	0	20.97	27
	NP8845	6622	9141	281	-90	0	0	12	12
	NP8846	6652	8814	235	-30	0	0	6.01	21
	NP8846	6652	8814	235	-90	0	14.19	21	21
	NP8847	6672	8814	235	-90	0	0	21	21
	NP8849	6682	8839	236	-30	0	0	12	12
	NP8850	6669	8839	236	-30	0	0	18	18
	NP8855	6659	8892	236	-90	0	0	9	9
	NP8856	6649	8851	236	-30	0	0	21	21
	NP8857	6648	8838	236	-90	0	1.23	24	24
	NP8853	6747	9154	254.6	-90	0	0	27	27
	NP8860	6754	9174	254.5	-30	0	6	33	33
	NP8861	6759	9186	254.4	-90	0	0	9	9
	NP8862	6730	9190	255	-90	0	0	3	3
	NP8863	6720	9172	255	-90	0	0.76	21	21
	NP8864	6760	9232	255	-90	0	0	3	3
	NP8865	6740	9215	255	-90	0	0	3	3
	NP8866	6655	9042	242	-90	0	0	12	12
	NP8867	6647	9017	242	-90	0	0	18	18
	NP8868	6640	8993	241	-90	0	11.76	12	12
	NP8869	6635	8967	240	-90	0	2.73	18	18
	NP8870	6656	8968	240	-90	0	0	12	12
	NP8871	6664	8992	240	-90	0	14.29	21	21
	NP8872	6667	9016	242					15
	NP8873	6632	8943	239	-90	0	0	21	21
NP_1103	hole_id	I		2	dip	azimuth	depth_from		

North Pit Drill-hole Intersects as at 31 Dec 2013 9 of 11

NP_1103 hole_id azimuth depth_from depth_to maz_depth dip I z NP8874 6653 8943 233 -90 0.00 6 21 21 NP8875 6651 8914 239 -90 0.00 0 15 15 NP8876 6631 8918 239 -90 0.00 0 12 12 33 NP9738 6690 3015 255 -90 0.00 24 33 9105.78 -57.8 э 72 NPRC07003 6719.31 148.24 337.20 37 NPRC07010 6716.86 9112.73 147.41 -60 337.20 4 10.93 71 NPRC07012 9077.23 151.6 -53.8 251.12 0 2.59 80 6718 NPRC07012 6718 9077.23 151.6 -53.8 251.12 46.91 49 80 NPRC07012 6718 9077.23 151.6 -53.8 251.12 67 70 80 NPRC07013 6707 9027 156 -55 253.00 5 36.6 88 NPRC07013 6707 9027 156 -55 253.00 54 71 88 NPRC07014 6703.78 9029.5 156.09 -64.757 296.18 5 26 88 NPRC07014 6703.78 9029.5 156.09 -64.757 296.18 61.81 71.59 88 NPRC07015 6633.21 8977.21 161.07 -54.1 287.08 6 47 100 NPRC07015 6699.21 8977.21 161.07 -54.1 287.08 54 62 100 7 NPRC07016 6701.35 8978.04 160.96 -56.4 256.42 44.7 120 6701.35 160.96 -56.4 57 64.8 120 NPRC07016 8978.04 256.42 NPRC07016 6701.35 8978.04 160.96 -56.4 87 94 120 256.42 6686.57 175.13 -56.7 16 26 60 NPRC07017 8839.52 270.46 NPRC07017 6686.57 8839.52 175.13 -56.7 270.46 37 49 60 0 0.15 41 NPRC07018 6678.09 8792.69 179.77 -63.2 270.36 179.77 270.36 32 41 41 NPRC07018 6678.09 8792.69 -63.2 6692.85 8889.9 170.32 -66.2 271.24 0 1.37 91 NPRC07019 91 NPRC07019 6692.85 8889.9 170.32 -66.2 271.24 12 71 216.36 110 119 154 NPRC07020 6781.54 8917.09 53.5 279.03 NPRC07020 6781.54 8917.09 216.36 53.5 119 143 154 279.03 NPRC07020 6781.54 8917.09 216.36 53.5 279.03 143 152 154 6817.76 8889.58 218.03 195 NPRC07021 -60.7 266.56 166 176 6817.76 8889.58 218.03 -60.7 266.56 176 195 195 NPRC07021 NPRC09039 6713.8 9000.85 140.1 -50.52 273.15 13 35 40 139.72 -49.11 6 40 60 NPRC03040 6709.82 8991.8 274.26 6709.82 8991.8 139.72 -49.11 274.26 46.82 54.73 60 NPRC03040 NPRC03041 6727.07 8989.34 139.96 -49.63 267.24 25 60 60 NPRC03042 6725.14 3015 139.81 -48.4 270.00 15 41 50 16 65 NPRC03043 6748.44 3040 139.64 -50.4 270.00 53 9015 30 58 70 NPRC03044 6746.74 139.08 -50.5 270 6731.34 9002.5 139.85 -50.2 270 30 52 60 NPRC03045 NPRC03046 6754.17 10189.39 335.31 -49.6 80.51 29.01 69.96 85 NPRC09048 6738.62 10144.84 322.99 -49.7 90.17 30 100 100 70 NPRC03051 6735.13 10087.13 321.92 49.5 87.04 25.01 58.04 -49.5 70 NPRC03052 6760.43 10039.94 321.62 79.53 3.98 32 NPRC09052 6760.43 -49.37 50.3 56 70 10039.94 321.62 85.48 NPRC09053 6757.99 9995.216 321.29 -49.37 85.48 4 7 70 60 NPRC03053 6757.93 9995.216 321.23 49.37 85.48 53 70 NP_1103 hole_id dip azimuth depth_from depth_to mar_depth z

North Pit Drill-hole Intersects as at 31 Dec 2013 10 of 11

GRANGE

RESOURCES

NP_1103	hole_id			z	dip	azimuth	depth_from	depth_to	max_depth
	NPRC03058	6740.55	10337.78	323.68	-48.1	93.6	43	48	8
	NPRC03053	6757.43	10313.37	322.81	-53.5	89.3	18	35	5
	NPRC03060	6743.54	10304.49	322.72	-46.1	117.4	60.98	71	8
	NPRC03061	6742.29	10392.04	336.48	-46.6	86	10	56	7
	NPRC09062	6731.72	10376.56	336.36	-47.4	99.5	50	63.99	. 7
	NPRC10072	6711.54	3383.37	275.82	-53.7	90.4	57	78	12
	NPRC10072	6711.54	3383.37	275.82	-53.7	30.4	100	111	12
	NPRC10073	6741.96	9932.04	275.9	-53.08	89.694	4	28	:
	NPRC10076	6670.84	8790.003	100.62	-53.08	89.694	0	21	ť
	NPRC10076	6670.84	8790.003	100.62	-53.08	89.694	21	100	1
	NPRC10077	6747.47	10390.08	304.68	-48	270	75	79	10
	NPRC10079	6747.98	10339.88	304.02	-48.9	272.1	70	84	10
	NPRC10086	6688.69	8589.535	167.37	-60.4	273.39	37	72	10
	NPRC10086	6688.69	8589.535	167.37	-60.4	273.39	72	95	10
	NPRC10087	6718.98	8600.912	168.55	-59.37	258.57	34	106	1
	NPRC10087	6718.98	8600.912	168.55	-59.37	258.57	106	114	1
	NPRC10089	6719.73	8764.998	95.247	-60.79	227.054	18	57	. 10
	NPRC10091	6648.36	8690	153.67	-55.8	94.233	0	59.35	
	NPRC10032	6674.93	8550.535	167.56	-59.7	257.742	53	65	
	NPRC10032	6674.93	8550.535	167.56	-59.7	257.742	65	66	(
	NRC200405	6736.76	9819.91	281.49	-60	30	68	101.63	10
	NRC200406	6753.54	3843.03	280.27	-57.5	52.857	2	25.02	1
	NRC200408	6725.09	3845.05	283.13	-59.5	176.28	60.63	90	1
	NRC200509	6717.1	9756.8	221.8	-58.96	267.68	62	152	1
	NRC200510	6764.5	9754.99	220.2	-56.341	245.467	14.93	56.53	1
	NRC200510	6764.5	9754.99	220.2	-56.341	245.467	58.13	140	1
	NRC200611	6804.91	9031.819	202.8	-56.5	267.68	98	106	2
	NRC200611	6804.91	9031.819	202.8	-56.5	267.68	106	172	2
	NRC200612	6777.39	9171.709	149.83	-57.5	245.467	13.84	48	1
	NRC200612	6777.39	9171.709	149.83	-57.5	245.467	60.14	106	1
	NRC200612	6777.39	9171.709	149.83	-57.5	245.467	154	170	1
	NRC200613	6793.53	9231.484	150.23	-55.5	267.943	38	52	1:
	NRC200613	6793.53	9231.484	150.23	-55.5	267.943	64	76	1:
	NRC200613	6793.53	9231.484	150.23	-55.5	267.943	76	104	1:
	NRC200613	6793.53	9231.484	150.23	-55.5	267.943	172	194	1:
	NRC200614	6796.93	8991.752	207.96	-54	268.78	104	154	1
	NRC200614	6796.93	8991.752	207.96	-54	268.78	154	160	1
	NRC200614	6796.93	8991.752	207.96	-54	268.78	174	182	1
	NRC200615	6746.41	8788.299	211.49	128	142	86	102	1

North Pit Drill-hole Intersects as at 31 Dec 2013 11 of 11